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Optimal Gaits for Mechanical Rectifier Systems
Justin Blair and Tetsuya Iwasaki, Fellow, IEEE

Abstract—The essential mechanism underlying animal loco-
motion can be viewed as mechanical rectification that converts
periodic body movements to thrust force through interactions
with the environment. This paper defines a general class of me-
chanical rectifiers as multi-body systems equipped with such
thrust generation mechanisms. A simple model is developed from
the Euler–Lagrange equation by assuming small body oscilla-
tions around a given nominal posture. The model reveals that
the rectifying dynamics can be captured by a bilinear, but not
linear, term of body shape variables. An optimal gait problem is
formulated for the bilinear rectifier model as a minimization of a
quadratic cost function over the set of periodic functions subject
to a constraint on the average locomotion velocity. We prove that
a globally optimal solution is given by a harmonic gait that can be
found by generalized eigenvalue computation with a line search
over cycle frequencies. We provide case studies of a chain of links
for which snake-like undulations and jellyfish-like flapping gaits
are found to be optimal.

Index Terms—Biological control systems, locomotion, motion-
planning, optimal control.

I. INTRODUCTION

I NSPIRATIONS from animal locomotion can provide a
framework for designing robotic vehicles capable of ro-

bustly maintaining velocity by adaptively changing propulsion
strategy as the surrounding environment changes. Animal
locomotion may be viewed as a process of mechanical recti-
fication [1], [2] in which a periodic body motion is converted
to sustained thrust force through dynamic interactions with the
environment. A specific motion pattern (or “gait”) is chosen by
each animal, depending upon the given environment, desired
locomotion speed and range, disability conditions on the body,
and other factors [3]–[6]. A fundamental problem in designing
robotic locomotors, as well as in understanding animal lo-
comotion mechanisms, is to determine a gait that optimizes
a quantity representing the cost and/or performance, such as
input energy.

Optimal gaits have been investigated in the literature on
robotic locomotors. One approach is based on biological
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inspirations, wherein a particular gait, observed in animal
locomotion, is parameterized and examined for optimality
with respect to a cost function. Optimizations are typically
performed via gridding of the parameter space and numerical
simulations. This type of approach has been taken to search
for optimal gaits for robots that mimic human walking [7],
snake crawling [8], and anguilliform swimming [9]. Methods
such as these might obtain an optimal parameter set within the
particular gait examined, but may miss globally optimal gaits
that differ from what is observed in biology.

Other approaches to find optimal gaits are based on some
standard formulations of optimal control problems and various
combinations of existing optimization methods. A popular
method is to expand the signals over a finite set of basis
functions, reducing the problem to a parametric optimization.
Reference [10] used this method to find an optimal gait for eel
swimming, where the necessary condition for optimality was
solved using Newton iteration. This method is also used for
biped walking with the aid of sequential quadratic program-
ming [11], [12]. Another well known method is to apply the
calculus of variations to reduce the optimization to a two-point
boundary-value problem. This method has been used by [13]
for nonholonomic locomotion systems, by [14] for a seven-link
biped robot, and by [15] for shape actuated locomotion systems.
While it would be ideal to have global solutions to general
optimal control problems, most, if not all, of the currently
available methods guarantee local optimality at best. This
means that the solution depends on the initial condition of the
numerical search in general, and thus can be far from the global
optimum.

In this paper, we take a different approach, focusing on
systems which are in continual contact with the environment
(including swimming and slithering, but excluding walking).
Instead of searching for locally optimal gaits for a fully non-
linear model of a locomotor system, we will first simplify the
model through techniques such as Taylor series and describing
function, and then develop a method for finding globally op-
timal gaits. In this way, potential suboptimality is not hidden
behind the numerical optimization procedure, but is explicit in
the problem formulation. The optimal gait for the simplified
model could then be used as an initial condition in a local
optimization for the original model. Thus, our method can
be viewed as a complement to, rather than a replacement of,
existing local optimization methods. The process to compute
our solution is extremely fast and numerically stable. Hence, it
can be applied to hyper-redundant rectifier systems with many
degrees of freedom. Another advantage is that an optimal gait is
found within those achievable by the given set of actuators. This
feature is especially important for underactuated systems that
have less actuators than the number of shape variables because
not all gaits are achievable by a small number of actuators.
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To this end, we first define a general class of mechanical rec-
tifiers which capture the essential dynamics of animal locomo-
tion, develop equations of motion, and then approximate the
system by assuming small perturbations around a nominal pos-
ture. It turns out that a linear approximation fails to capture the
rectifying dynamics; the simplest model should contain a bi-
linear term of the shape variables and their derivatives. An op-
timal gait problem is then formulated for the bilinear rectifier
model, where a quadratic cost function is minimized over the set
of periodic body movements achievable by control inputs, sub-
ject to an equality constraint on the average locomotion velocity.
The problem belongs to the class of infinite dimensional non-
convex problems that are extremely difficult in general. How-
ever, our result reveals that a globally optimal gait is purely si-
nusoidal and can be found by calculating the generalized eigen-
values of a pair of Hermitian matrices and by sweeping over the
frequency.

Several case studies are provided. We consider a mechanical
rectifier formed as a chain of multiple links subject to environ-
mental forces with directional preference. It is demonstrated that
natural gaits similar to those observed in animal locomotion can
be found, without any a priori assumptions, through minimiza-
tion of such cost functions as input power, rate of shape change,
and torque derivative. In particular, undulatory gaits similar to
snake crawling or leech/lamprey swimming are found to be op-
timal if the nominal posture is straight, while flapping gaits ob-
served in jellyfish-like animals are optimal if the nominal pos-
ture is curved. We also consider a disk-mass system that cap-
tures the rectifying dynamics in the simplest manner. Analyt-
ical expressions of optimal gaits are obtained for this simple
case, and are used to make some general observations through
analogy to more complex rectifiers, suggesting how system pa-
rameters affect the gait.

Conference versions of this paper have appeared in [16] and
[17], where optimal gaits were sought over the set of harmonic
signals and solutions were given without details of proofs. This
paper extends the previous results to the case of general periodic
signals and provides complete proofs. Derivations of the general
rectifier equations are also new in the present paper.

Notation: The sets of by real and complex matrices are
denoted by and , respectively, where the dimen-
sional notation is omitted if or . The set of
positive real numbers is . The set of positive integers is de-
noted by , and its subset up to by . Let .
For matrices with , the matrix obtained by stacking
them in a column is denoted by , and we use

if they are stacked on the diagonal. When
the argument is a single vector , is the diagonal ma-
trix whose diagonal entry is . For a complex matrix ,
its transpose, complex conjugate transpose, and real part are de-
noted by , , and , respectively. For a generic func-
tion and , define

If is a constant matrix, is the block diagonal matrix having
repeated times on the diagonal. For a differentiable mapping

of variable , its partial derivative
is the matrix with entry .

Fig. 1. Multilink swimming system.

The set of all -periodic, unbiased, continuously differen-
tiable, possibly vector-valued functions is denoted by . For

, the finite dimensional subspace of spanned by har-
monics up to the order is denoted by . For consistency, we
also define . The phasor of with
is defined by the coefficients of the complex Fourier series as
follows:

where , and is called the phasor of . Let
be the set of transfer functions of the form

, where is a constant Hermitian matrix and
is a linear combination of stable (proper) transfer functions

and differentiators. If an input is applied to , the
output is given by where is the steady state response that
is -periodic, and is the transient response that eventually dies
out. With a slight abuse of notation, we denote the -periodic

signal by . This notation is motivated by the fact
(see Lemma 4 in Appendix A) that the average value of
over a cycle is given by when is sinusoidal (i.e.,

).

II. MECHANICAL RECTIFIER SYSTEMS

Consider a multi-body mechanical system placed in an envi-
ronment of up to three spatial dimensions. The bodies are rigid,
and are connected to each other through rigid or flexible mech-
anisms (e.g., rotational joints as in manipulator arms [18] and
flexible wires as in tensegrity structures [19], [20]). The system
is equipped with actuators, each a local input force that acts be-
tween bodies and producing no global thrust with respect to the
environment. For example, motors may drive joints and linear
actuators may push and pull links relative to one another, but
there are no jet engines. The motion of the bodies produce in-
teractive forces and torques from the environment, and when
periodic motion can result in a net thrust due to those interac-
tive forces, we call the system a mechanical rectifier [21], [22].

We restrict our attention to systems that continually interact
with the environment. This excludes systems such as walking
robots but still includes a wide range of other animal locomo-
tions, such as swimming, crawling (as in snakes), and flying.
The multilink robot inspired by swimming frogs, depicted in
Fig. 1, is one such example.

The following sections first develop equations of motion for
a general class of mechanical rectifiers in up to three spatial
dimensions, then derive an approximate quadratic system that
captures and reveals the mechanism of rectification.
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A. General Equations of Motion

To derive the equations of motion for a general multibody
rectifier system, we begin with the well known Euler-Lagrange
equation:

(1)

where are the generalized coordinates,
are the generalized forces, and is the
difference between the kinetic energy and the potential
energy . The generalized force is defined by

(2)

where is the virtual work done by external forces and
torques, and is the virtual displacement in generalized coor-
dinates. Let us split the generalized coordinates into two parts

where is the global position vector for the center of
mass of the system relative to the environment (the spatial di-
mension is , 2, or 3), and contains the variables
specifying the local shape and global orientation of the bodies.
It is assumed that the kinetic energy and potential energy
are given by

where is the inertia matrix, is the total mass of the
system, is the elastic energy stored in the system, and is
the net gravity (buoyancy) vector. We consider the case where
the generalized force consists of environmental forces, actuator
inputs, and dissipative effects such as joint frictions.

Assembling all the generalized forces (details will be given in
the next section) and exploiting the structures of the kinetic and
potential energies, the equations of motion for general rectifier
systems are given by the following form:

(3)

where the terms and are the inertial
torques and forces, are the torques due to body
stiffness and damping, is the applied input, the terms
involving capture the effect of environmental forces, and

The quantity is the vector of link velocities in
the body coordinates, relative to the environment. The function

is a possibly nonlinear mapping that generates
the forces and torques resulting from the relative motion. Typ-
ically, satisfies the sector condition for each entry
of the input/output pair . We see from (3) that the

applied input changes the shape and orientation , which in
turn drives the global position through interactions with the
environment. In particular, a periodic motion , generated by a
periodic input via the first equation, can be rectified through
the second equation to result in a “locomotion” with velocity .

B. Derivation of the Generalized Force

We now provide a detailed derivation of the generalized force
that leads to terms in (3). Specifically, we will derive the three

terms in where is the environmental force,
is the actuator force, and is the dissipative force, respec-

tively. In the development, “forces” are meant to include both
linear forces and rotational torques, and similar generalizations
apply to “displacements,” “velocities,” and “coordinates.”

1) Environmental Forces: We assume that the effect of the
environmental forces on the system can be approximately rep-
resented by forces acting on a finite number of points on the
bodies. Let be a vector indicating the Cartesian coordinates of
such points, and be the corresponding vector of forces acting
on them. The velocity of the points relative to the environment,
, can be expressed as in the body coordinates, where

is the rotation matrix that transforms a vector from the in-
ertial frame to the body frame. Assume that the environmental
force is a (possibly nonlinear) function of the relative velocity
and is given by in the body frame. Transforming it
back to the inertial frame, the environmental force is given by

(4)

Note that the Cartesian coordinates are linear in . In fact, it
would have the form for some functions
and where the former is linear. We then have

where the coefficient of is constant. The virtual work done
by the environmental force is , from
which we obtain the corresponding generalized force

where

2) Actuator Forces: Let be the displacement of the
actuator (e.g., the joint angle driven by a rotary motor or dis-
placement of a linear motor) and let be the force or torque
generated. Define and by stacking and
in columns where is the number of actuators. Suppose that

is a differentiable function of and is independent of due
to the assumption that all actuators are local (only generating
forces/torques between bodies). The virtual work done by the
actuators is



62 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 56, NO. 1, JANUARY 2011

Hence, from (2), the generalized forces due to the actuators are
given by

Note that is a constant matrix if is a linear function of
, which is the case when, e.g., contains all the joint angles

and consists of those actuated. The matrix depends on
in general, as is the case if a body is driven by a linear actuator
attached to another body, similar to skeletal muscles.

3) Dissipative Forces: Let be the vector of relative dis-
placements of two bodies between which dissipative forces like
frictions exist. The variable is a function of , but not , since
the dissipation effect due to the interactions with the environ-
ment is captured within the environmental force. Let us assume
that the dissipative forces experienced through displacement
is a differentiable function of , denoted by . Typically,
the function is a diagonal mapping such that each diagonal
entry satisfies the sector condition . The virtual
work done by the dissipative forces is

from which we obtain the associated generalized forces

If represents linear (viscous) damping, then the generalized
forces have the form for some positive
(semi)definite matrix . If is a linear function of (e.g.,
joint angles), then becomes independent of .

III. MECHANISMS UNDERLYING THRUST GENERATION

To gain insight into the locomotion mechanism of rectifier
systems, we attempt to analyze the behavior of the rectifier (3)
through the simplest approximate model that captures the es-
sential dynamics of rectification. This section develops such a
simple model and reveals the mechanism underlying rectifica-
tion of periodic body motion to yield global velocity . In
the rest of this paper, we consider for simplicity the case where
the effect of the gravity potential can be neglected (swimming
of a neutrally buoyant system, crawling on the horizontal plane,
etc.), and set in (3).

A. Nominal Posture and Approximation

Many biological systems are observed to take a particular
posture for relaxed cruising between active locomotion phases.
For instance, a fish cruises with a straight body posture, while
a ray cruises with a posture resembling a fixed-wing aircraft.
Motivated by these cruising postures, we introduce the notion
of a nominal posture. A posture of the rectifier specified by the
shape and orientation is said to be nominal at
velocity if

(5)

where is the straight line in that is parallel to and passes
through the origin, indicating the direction of locomotion. Con-
dition (5) means that if the rectifier takes a nominal posture
at velocity and receives a (fictitious) external force in the di-
rection of to balance out the environmental drag , then the
locomotion velocity and body shape/orientation are simultane-
ously maintained, i.e., and , in the absence
of any actuating input . Certain periodic body motion about
a nominal posture , generated by actuator input , is expected
to produce the necessary thrust for the system that balances out
the drag and maintains locomotion at the average velocity .
Throughout the paper, we choose the global coordinate frame
so that its first axis is aligned with , that is, for some

where is the vector whose entry is one and
the others are zero.

We now consider a periodic body motion about a nom-
inal posture at velocity , and assume that small oscillation of

maintains the locomotion velocity near .
To simplify the equations of motion in (3), we first linearize the
environmental force function using the Taylor series (slope at
a nominal operating point) or the describing function (average
slope in the operating region) [23]. While such approximation
could introduce a potentially large error in general, qualitative
characteristics of the environmental forces, that are important
for shaping the gait, may be captured. For instance, anisotropy
of normal and tangential forces, which is known to be essential
for undulatory locomotion [8], [24], [25], can be well captured
by linear models [8]. For further simplification, the nonlinear
equations of motion in (3) may be linearized by expanding each
expression into its Taylor series in terms of , and keeping up
to the first order terms. However, as shown shortly, the essen-
tial dynamics for rectification turns out to be embedded in the
second or higher order terms in the second equation of (3), and
hence the linearized model fails to capture the locomotion dy-
namics. For this reason, we choose to linearize the first equation
in terms of but keep up to the second order terms in the second
equation. In particular, we make the following approximations:

where , , , , and are constant matrices,1 is
affine in , and is quadratic in . Hence, assuming that

and its derivatives are small, and that , the gen-
eral equations of motion in (3) are approximated by

(6)

where , , and
is the velocity of the center of mass. We shall call the system
(6) a bilinear rectifier since the essential mechanism for thrust
generation is captured by the bilinear term as explained
in the next section.

1With a slight abuse of notation, we use symbol � to denote the nominal value
of ����, and similarly for �.



BLAIR AND IWASAKI: OPTIMAL GAITS FOR MECHANICAL RECTIFIER SYSTEMS 63

B. Bilinear Mechanism for Rectification

The dynamics of rectification are transparent in the simpli-
fied equations of motion (6). In particular, the second equation
shows that a periodic body movement leads to the thrust

and drag . The difference between the two
gives the acceleration term , and the thrust and drag should
balance on average during the steady state locomotion. A close
look at the thrust term reveals that the essential dynamics of rec-
tification are captured by the skew-symmetric part of the linear
coefficient matrix in . To explain this, let us consider the
simple case where the direction of locomotion is fixed
and define by . Then the average
thrust over a cycle of periodic motion is given by

(7)

where is the period of , and we noted that the integral
of over a cycle is zero for any periodic signal and for
an arbitrary symmetric matrix . We now see that the periodic
motion is rectified through the bilinear mechanism
in (7) to generate the thrust. This observation motivates us to
call (6) the bilinear rectifier. It should be emphasized that, if the
original equations of motion (3) are linearized in terms of ,
then we have and the resulting approximation fails to
capture the thrust essential for locomotion.

The bilinear mechanism in (7) is a generalization of the rec-
tifying dynamics studied by Brockett [2], [26], where
takes the form , representing a canonical dynamics
for rectification. The basic mechanism for gait selection is em-
bedded in the eigenvectors of . We have shown [22] that the
eigenvector of associated with the maximum eigenvalue

gives the basic gait, which maximizes the thrust to velocity
ratio at a given cycle frequency

(8)

where and the maximum is attained at or
. The resulting gait turns out to be a circle

on the plane for Brockett’s canonical rectifier, and a
body undulation with traveling waves for a robotic snake [8].
Optimality criteria for gait selection would also include other
factors such as energy consumption and amplitudes of control
inputs and motion variables. The optimal gaits with respect to
such criteria turn out to be variations of the basic gait embedded
in the bilinear rectification mechanism.

IV. OPTIMAL LOCOMOTION OF THE BILINEAR RECTIFIER

In this section, we first formulate an optimal locomotion
problem to find a gait (periodic ) that minimizes a quadratic
cost function for the mechanical rectifier. The problem is
difficult, so we reformulate it for tractability using the stan-
dard averaging technique, and finally give a globally optimal
solution to the modified problem. The optimal gait theory will
be developed for the bilinear rectifier (6), but the result will
be validated later for the original fully nonlinear system (3)
through numerical simulations.

TABLE I
OBJECTIVE FUNCTIONS SPECIFIED BY �

A. Problem Formulation

Consider the mechanical rectifier (6) with nominal posture
at locomotion velocity . We would like to find an optimal gait

(and the control input achieving the gait) that mini-
mizes a quadratic cost function subject to the constraint that the
average velocity of locomotion is . The problem can be for-
mulated as the following optimization over the set of -periodic
signals :

(9)

where , , and are signals satisfying (6), and is a
given transfer function. Without loss of generality, we assume
that the locomotion is along the -axis with speed , so
that .

The objective function is quadratic in and , and through
the choice of , derivatives of and may also be captured,
representing many physical quantities. Table I provides a short
list of such quantities and their associated weighting function

, where is the vector of shape variables (e.g.
joint angles) specified by a constant matrix . The average
value over one period is taken for input power, and mean-square
values for the other quantities. The cost function can be made to
include multiple objectives by taking a weighted sum of these
(and other) quantities.

For the quadratic cost function with an arbitrary weighting
, the solution to problem (9) may generate a gait with a large

amplitude oscillation of , violating the small amplitude as-
sumption imposed to derive the quadratic equations of motion
in (6). Such gait may not be appropriate for the original equa-
tions of motion (3). To remedy this situation, one can penalize
the amplitude of by setting

(10)

where corresponds to the first entry in Table I, and is a
weighting parameter satisfying . When and
define competing objectives, the amplitude of optimal would
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be a nondecreasing function of . The largest value of can
thus be found so as to satisfy a hard constraint on the amplitude
of , if desired. This type of Pareto-optimal approach has been
used for multiobjective control with a proof of convergence
[27].

B. Tractable Reformulation

Let us now reformulate the problem in (9) for tractability by
simplifying the constraints through the averaging technique. If

, it follows from averaging the second equation
in (6) over a cycle that

(11)

holds approximately for , where , , and are the
constants specified by

Conversely, if (11) holds, then satisfies the second
equation in (6) on average. Therefore, it appears reasonable to
replace the velocity constraint in (9) and the second equation in
(6) by the equations in (11). Finally, let us define the following
problem:

(12)

where the constraint (11) is imposed only for . We ex-
pect that a solution to this problem will automatically satisfy
the remaining omitted acceleration constraints, i.e., (11) for

, on the grounds that acceleration in a direction normal
to would require a larger value of the objective function and
would hence be eliminated. This is also what we have observed
in all of our numerical studies.

The omission of constraints (11) for can be rig-
orously justified for certain practical cases. Recall that most an-
imals have a body symmetric about an axis (or a plane), and the
direction of locomotion is often chosen to be aligned with the
axis of symmetry. A robotic locomotor may be designed to have
this property. In this case, feasible gaits may be restricted to be
symmetric about the line, at the expense of potential increase
in the cost function value. A benefit is that the symmetry can be
exploited to make the gait optimization simpler. A symmetric
gait would automatically lead to locomotion along the line
due to the balance of forces. The equations of motion (6) can
then be given in terms of a reduced number of independent vari-
ables with only one degree of freedom in , i.e., . For an
example, the locomotor in Fig. 1 could be reduced to the system
shown in Fig. 2, assuming that the arm and leg movements are
symmetric about the dashed line. The reduction in the size of the

Fig. 2. Exploiting symmetry of the frog-like multilink system.

optimization problem (the dimensions of and ) would gen-
erally lead to more efficient and reliable computation.

C. Globally Optimal Solution

This section presents an exact solution to the problem in
(12). We first consider a finite dimensional approximation of
the problem where the underlying space of periodic signals

in (12) is replaced by the subspace spanned by the
first harmonics of the Fourier series expansion for a given

. The following lemma reduces this modified problem to
a constrained quadratic optimization.

Lemma 1: Let be given, and consider the problem
obtained by replacing by in (12). Define

(13)

Then the problem is equivalent to

(14)

In particular, a solution to (14) gives an optimizer

for the original problem (12).
Proof: Let and be the phasors of periodic signals
and , respectively. Using Lemma 4 in Appendix A, it

can be verified that the objective function in (12) is given by

and the constraints are expressed as

The result then follows by eliminating the variable through
the second constraint and assembling the summations into Her-
mitian forms of augmented vectors.

For a fixed , the problem in (14) is a static quadratic opti-
mization, which is nonconvex in general because and

are possibly indefinite. Nonconvex optimizations are
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often hard to solve, but for this particular problem, we have an
exact, analytical solution.

Lemma 2: Let Hermitian matrices and be given and
consider

(15)

The constraint is feasible if and only if the largest eigenvalue
of is positive. In this case, the objective function is bounded
below on the feasible set if and only if the following (convex)
set is nonempty:

The largest element of is well defined and is a generalized
eigenvalue of . The minimum value of (15) is equal to .
An optimizer is given by an eigenvector of the pair
associated with the generalized eigenvalue , normalized so
that .

Proof: The minimum value in (15) is bounded below and
is greater than a given value if and only if

Feasibility of the constraint implies its regularity; if satis-
fies , then and respectively make the
value of positive and negative. Hence, the S-proce-
dure (Lemma 5 in Appendix A) can be used to verify that this
condition holds if and only if there exists such that

which is equivalent to

The minimum value in (15) is obtained by maximizing sub-
ject to these constraints over the variables . Since the
largest is equal to , the minimum value is given by the largest
element of .

Let be the minimum eigenvalue of . Note that
is a concave function of since the matrix is affine in .

By feasibility of the constraint, must have at least one positive
eigenvalue, and hence is negative for sufficiently large .
On the other hand, boundedness of the objective function guar-
antees that is nonempty, and hence is nonnegative for
some . Therefore, there exists such that and

for all greater than . Clearly, is the largest el-
ement of , and is a generalized eigenvalue of .

If an eigenvector of , associated with the general-
ized eigenvalue , can be chosen so that , then it
is easy to verify that is an optimizer that gives the objective
function value . To show existence of such , let be an
eigenvector of associated with its min-
imum eigenvalue, where . Since is the largest element
of , we have for all . Since , we have

Thus is positive and therefore can be normalized so
that . In this case, implies

. Now, the result follows by passing the limit and
noting that .

Based on Lemma 2, a solution to (15) can be found by com-
puting the generalized eigenvalues of . If the constraint is
feasible and objective function is bounded, then one (or more) of
the generalized eigenvalues must be real and satisfy .
The largest of such generalized eigenvalues is . If is not
repeated, then it has one-dimensional eigenspace. In this case,
every eigenvector satisfies and hence can be nor-
malized so that . This is an optimizer of (15).
If is repeated, then the dimension of the eigenspace is more
than one and can be nonpositive for some eigenvector.
However, Lemma 2 guarantees that there is at least one vector in
the eigenspace that gives positive and hence is a solution
after the normalization.

The following result establishes that the optimal value of (14)
is independent of . The important implication is that the op-
timum of the original problem (12) can always be achieved by
a sinusoid with a single frequency component.

Lemma 3: Consider the optimization problem (14), and de-
note by the optimal value of the objective function. Then, for
an arbitrary , it holds that .

Proof: In view of Lemma 2, the problem (14) can be refor-
mulated as

Note that, for each , the set of satisfying
is convex. Using this fact, the problem can further be

reformulated as

This completes the proof.
We are now ready to state the main result.
Theorem 1: Consider the rectifier system given in (6) and

the optimal locomotion problem in (12). Define , ,
and by (13). Let be the optimal value of the objective
function. Then we have

(16)

Let and be the optimizers. Then, the optimal period is
, and the optimal gait and input are given by

where is the eigenvector of the pair
associated with the generalized eigenvalue , normalized to
satisfy .

Proof: Recall that the cost function is an average value of
over one cycle, where is the steady state output of
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with input , and and are defined from
. Since is a subset of continu-

ously differentiable periodic signals and is a linear combi-
nation of stable transfer functions and differentiators, the signal

is continuous and periodic. Therefore, the signal , and hence
the definite integral of in the cost function, can be ap-
proximated by truncated Fourier series to an arbitrary accuracy.
From Lemma 1, the problem (12) can then be characterized as
the limit of the sequence of quadratic optimizations
(14). Lemma 3 shows that the optimal value of (14) is indepen-
dent of , hence the optimal value of the original problem (12)
is equal to that of (14) with , indicating that a sinusoid is
an optimizer. The solution to the optimization over is given
by Lemma 2 with , as stated in the theorem.

The optimal locomotion problem (14) is nonconvex (partly)
due to the velocity constraint. In general, it is difficult to find a
solution to a nonconvex problem with guaranteed global opti-
mality, since multiple local optima may exist. For our partic-
ular problem, however, it is possible to determine the global
optimum with the aid of the S-procedure (Lemma 5 in Ap-
pendix A) as shown in Theorem 1. The optimal gait among
all periodic functions has turned out to be a pure sinusoid for
the bilinear rectifier (6). This can be viewed as a generalization
of the previous result [22] that proved optimality of sinusoids
when maximizing the thrust generated by a bilinear rectifier.
The problem in (16) can be solved by generalized eigenvalue
computation plus a line search over the frequency . In partic-
ular, the optimal solution, for a fixed , is given by the maximal
real generalized eigenvalue of the pair and the
corresponding eigenvector .

V. UNDULATORY AND FLAPPING GAITS

OF THE LINK CHAIN RECTIFIER

In this section, we will demonstrate the utility of our optimal
gait result through numerical examples. Specifically, we con-
sider a mechanical rectifier formed by a chain of rigid links, and
apply Theorem 1 to find optimal gaits with respect to several
cost functions. Two nominal postures are examined; the straight
posture “ ” and the bow posture “(” while moving to the left.
Various gaits will be shown to emerge from optimization of dif-
ferent cost functions with different nominal postures, including
undulatory and flapping gaits as well as their hybrid.

A. Link Chain Rectifier

Consider the planar motion of a chain of rigid links as
shown in Fig. 3. For , the link has mass , mo-
ment of inertia , length , and angular displacement
measured from the -axis. For , the joint between the

and links is actuated by torque input (when pos-
itive, the and links tend to rotate counterclockwise
and clockwise, respectively), and the joint angle is denoted by

. The body is placed in an environment (on the
ground, in water, etc.), and is subject to the interactive forces.

The key property for mechanical rectification is the differ-
ence in the tangential and normal components of the interactive
force from the environment acting on each link. In particular,
the normal force tends to be much larger than the tangential
force (e.g., snake crawling on the ground [24] and slender-body

Fig. 3. Link chain rectifier.

swimming [28]–[30]). The simplest way to capture this prop-
erty, which is often adequate for at least qualitative analyses, is
to approximate the tangential and normal forces on each link
( and ) by linear functions of the respective components
of the relative velocity between the link and environment (
and ). That is, for the link

(17)

where and are constants such that . The linear
model in (17) may be obtained from direct curve fitting of ex-
perimental data, or from (quasi)linearization of a more realistic
nonlinear model. We call the system under this type of direc-
tional forces a link chain rectifier (LCR).

The general equations of motion for the LCR have been de-
rived in an attempt to model robotic snake locomotion [8], and
are of the form given by (3). Motion dynamics near an arbi-
trary nominal posture can be approximated by the bilinear
rectifier (6). The details of the models are summarized in Ap-
pendix B. The models thus developed naturally capture the dy-
namics of slender animals that undulate for locomotion, such
as crawling snake [8], [24], and swimming leech and lamprey
[31]–[33]. While the nominal posture for such undulatory lo-
comotion would be straight, optimizations at another nominal
posture will lead to flapping gaits, as shown later.

For the planar case , the term for rectifying
dynamics in (6) has the form . The model for LCR
defined in Appendix B shows that, regardless of the nominal
posture , the skew-symmetric part of is zero (in fact is
diagonal) for if the environmental interactive force has
no directional preference, i.e., for . In this case,
the net thrust over a cycle is zero for any periodic body motion
as seen in (7). This is a proof that the directional preference in
the environmental force is essential for locomotion of LCR.

For the numerical studies reported below, we set the param-
eter values from measured data of a medium size leech to keep
the model realistic. The leech has mass and length

, and was observed to swim at speed around 0.157
m/s by undulating its slender body like snakes with a cycle fre-
quency near 2.7 Hz. The leech has a segmented body that can
be modeled by a chain of identical links where .

B. Undulatory Gait

We set the nominal posture to be straight . No stiffness
or damping is assumed at the body joints. The parameters of the
bilinear rectifier (6) for this case are summarized at the end of
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Fig. 4. Objective function versus frequency �: power in mW, torque in �� �

�� � ���� , shape derivative in ���	��
� .

Appendix B. Assuming an average velocity of
(negative sign indicates swimming to the left), the optimal gait
problem (12) is solved for three cost functions in Table I: input
power, input torque, and shape derivative where . The
optimal gait for each case has been found by solving (16) via
eigenvalue computations with frequency sweep.

Fig. 4 shows the minimum value of each objective function as
a function of frequency , which is the maximum real general-
ized eigenvalue of the pair in (13). Each function
turned out to be quasi-convex and have a unique global min-
imum for this particular example. The optimal cycle frequencies
of periodic body motion are found to be 22.0 rad/s (power), 78.1
rad/s (torque), and 16.0 rad/s (shape), whereas the frequency ob-
served for the particular leech used for modeling was 17.0 rad/s.
The optimal body shapes are shown in Fig. 5. These shapes are
generated from the phases and amplitudes (Fig. 6) of the shape
variables (joint angles) . In each figure, the leech head/tail is
to the left/right. The phase angle decreases from head to tail, in-
dicating waves traveling down the body to generate thrust. The
number of waves expressed by the body is roughly equal to the
phase lag from head to tail, divided by 360 . During swimming,
the live leech exhibited about 250 phase lag, and approximately
uniform (but slightly increasing toward the tail) amplitudes over
the body of about 10 . The resulting body shape was fairly close
to the one for the minimum shape derivative depicted in Fig. 5.
Hence, it is tempting to conclude that the shape derivative, rather
than the power or torque, may be closely related to the quantity
that actual leeches try to minimize.

C. Flapping Gait

In the previous section, the nominal posture was chosen to be
straight with the locomotion velocity vector aligned with the
body. We now consider the situation where the body is initially
straight and is perpendicular to . The body would then be bent
due to the fluid drag, and, with flexible joints, take a bow posture
“(” when it moves to the left and the drag balances with the
restoring stiffness force. We choose this as the nominal posture.
In particular, is set so that linearly decreases from

to . Assuming an average velocity of
(negative sign indicates swimming to the left),

the joint stiffnesses have been specified so that the

Fig. 5. Optimal body shapes (snap shots during swimming at an arbitrary time
instant).

Fig. 6. Undulatory gaits: phase and amplitude of relative angles � along the
body.

first condition in (5) is satisfied. Gaits expected at this nominal
posture include two flagella pushing a central body forward, or
a radially symmetric jellyfish-like locomotion.

We have solved the optimal locomotion problem in (12) with
objective function in (10) where captures the perturba-
tion from , and captures the shape derivative, input torque
rate, or input power as indicated in Table I. For each case, the
optimal gait was computed using Theorem 1, where the scalar
weight was tuned by iteration so that the amplitude constraint

was satisfied, as described in Section IV-A. The
results of the three optimizations are summarized in terms of

, which are the joint angle deflections from the nom-
inal posture. Numerical simulations are then used to examine
the effects of approximations associated with the equations of
motion and the optimal gait problem. Unless otherwise noted,
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Fig. 7. Flapping gaits: phase and amplitude of relative angle perturbations
� � along the body.

TABLE II
OPTIMAL FREQUENCIES [rad/s] AND SIMULATED VELOCITIES [mm/s]

the second equation in (6) is simulated by enforcing the calcu-
lated optimal gait as the input.

Fig. 7 shows the phase and amplitude of for the three op-
timal gaits whose frequencies are summarized in Table II. We
see that the phase is maximum at or around the middle of the
body and decreases toward both ends. This means that all three
gaits possess some degree of traveling waves down each arm.
However, the minimum shape derivative motion has a much
smaller phase variation than the power or torque rate case, indi-
cating that it has a much lower number of waves expressed along
the body. It should be noted that the torque rate criterion gener-
ated an asymmetric gait. After checking this result against the
optimal gait under the symmetry constraint, we found that the
asymmetric gait did indeed have a strictly smaller minimum ob-
jective value. Among the three cases, the average amplitude over
the body tends to be smaller if the phase variation is smaller.
This is because small, relatively in-phase, joint angle amplitudes
add up to produce a large overall motion which maintains the de-
sired velocity. Interestingly, the torque rate case does not bend
at all at the center joint (only rotates), retaining its initial nom-
inal bend at all times.

Fig. 8 shows five snapshots of simulated optimal locomotion
for each case, taken 1.25 periods apart. These figures clearly

Fig. 8. Snap shots of LCR locomotion, taken 1.25 periods apart.

show that the optimal motion calculated for minimum power
and shape derivative are symmetric about the direction of lo-
comotion (horizontal axis). The asymmetry is clearly visible
for the torque rate case. The flapping gait is found optimal for
the shape derivative criterion, while undulation of each arm is
optimal for the torque rate criterion. The optimal gait for the
power criterion is a mixture of flapping and undulation. The
horizontal axis scales are different in each figure due to the dif-
fering optimal frequencies calculated for each motion; for ex-
ample the shape derivative motion moves much further in five
periods than the torque rate motion, although the locomotion
speeds are about the same.

Fig. 9 shows the simulated velocity, where the time responses
are colored in the same way as Fig. 7 for each case. We see that
the -velocity is exactly zero for the symmetric gaits, and os-
cillating closely about zero for the asymmetric gait. Thus, as
expected, the optimization forces the -velocity to be zero on
average even though no such constraint is explicitly imposed.
The oscillation of the -velocity is small in the power and torque
rate cases, but is much larger in the shape derivative case due to
the large stroking motion of the arms. The non-sinusoidal shape
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Fig. 9. Simulated CG velocity.

in the shape derivative case results from higher frequency com-
ponents which can be explained by thinking of a flipping fish
tail: for one period of motion the tail produces two thrusts. The
varying magnitude of the -velocity results from the alternating
high and low drag associated with the arms being extended out
or folded back during the stroke. In general, the higher the wave
number and frequency a motion possesses, the smaller the per-
turbation about the desired average velocity.

Finally, average -velocities are summarized in Table II. The
“nonlinear ” and “bilinear ” indicate the average velocities
calculated from simulations of the second equation in (3) and
(6), respectively. For the bilinear rectifier, the simulated average
velocities are close to at which the optimal gaits
are calculated, despite the fact that oscillations of around this
value are ignored during the optimization. On the other hand,
the higher order nonlinearity tends to reduce the actual swim
speed. The gaits found from the bilinear rectifier equations may
be away from optimality for the original fully nonlinear equa-
tions of motion. Nevertheless, the basic gaits thus found do lead
to reasonable locomotion of the original system, and may be
used as the initial condition for further optimizations that would
necessarily be local due to the system complexity.

VI. CONCLUSION

We have defined a general class of mechanical rectifier
systems that captures the essential dynamics of animal loco-
motion. An optimal gait problem was formulated to minimize
a quadratic cost function while achieving a given speed of
locomotion on average. The solution was shown to be purely
sinusoidal, and calculated from generalized eigenvalues and
eigenvectors of a pair of Hermitian matrices as frequency was
varied. This is a very fast and numerically stable method ca-
pable of handling underactuated and hyper-redundant systems
while ensuring achievability. Unlike most, if not all, of existing
approaches, our result provides a globally optimal solution.
The key is not to compromise the solution by aiming for local
optimality, but to reformulate the problem for tractability, in
terms of a simplified model capturing the essential rectifier
dynamics. The optimal gait thus obtained can be used as a

reference signal for closed-loop control. Moreover, it can also
be used, if desired, as an initial condition for the existing local
algorithms to refine the gait for a more complex, fully nonlinear
model of the rectifier dynamics.

The case studies have shown that the quadratic optimization
can produce gaits that closely resemble those seen in biology.
In particular, for the link chain rectifier with a straight nominal
posture, the gait minimizing the shape derivative was found sim-
ilar to the natural motion exhibited in swimming leeches. For the
link chain rectifier with a curved nominal posture, most optimal
gaits were found to be symmetric, agreeing with our intuition
based on biological observations of swimming jellyfish-like ani-
mals. The gait which minimized the torque derivative was found
to be asymmetric, however, indicating that some systems may
benefit from unconventional gaits that are not commonly ob-
served in biology and counter to intuition.

Finally, these studies demonstrate that the proposed frame-
work for computing optimal gaits can be very useful, not only
for robotic locomotor designs, but also for increasing our under-
standing of animal locomotion mechanisms from a biological
point of view. The models of rectifier systems could be used
as a basis for further analysis and design of locomotion control
systems. Of particular interest is the limit cycle behaviors of the
rectifier systems driven by biological feedback control systems
called central pattern generators [34]–[38].

APPENDIX A
PRELIMINARY LEMMAS

Lemma 4: Let , a positive number ,
a vector-valued signal and a transfer function

be given. Let be the steady state
response of with input . Then the following hold:

where .
Proof: The result follows from straightforward calculation

using basic properties of linear systems and orthogonality of
harmonic basis functions.

Lemma 5 (S-Procedure [39]): Let real-valued quadratic func-
tionals and on a complex linear space be given, where
each has the form with a real
constant , linear functional on , and Hermitian form

. Suppose satisfies the regularity condition: there exist
such that and . Then

holds if and only if
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APPENDIX B
LINK CHAIN RECTIFIER MODEL

The link chain rectifier has been introduced as a model for
robotic snakes [8], and the equations of motion are given by (3)
with the following definitions:

...

. . .
. . .

. . .
. . .

where , , and is the vector whose
entry is . Given a nominal posture , the bilinear rectifier

model that approximates the original system is given by (6) with

where the subscript is used to indicate that a function is eval-
uated at , e.g. . If the nominal posture is
chosen to be straight , then these parameter definitions
simplify to

Additionally, if and for all , the equations
are further reduced by noting that . The following
parameter values are from a typical medicinal leech, and are
used for the model in the numerical study reported here unless
otherwise noted:
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