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Entrainment to natural oscillations
via uncoupled central pattern generators

Y. Futakata and T. Iwasaki

Abstract—Mechanical systems can often be controlled effi-
ciently by exploiting a resonance. An optimal trajectory mini-
mizing an energy cost function is found at (or near) a natural
mode of oscillation. Motivated by this fact, we consider the
natural entrainment problem: the design of nonlinear feedback
controllers for linear mechanical systems to achieve a prescribed
mode of natural oscillation for the closed-loop system. We adopt
a set of distributed central pattern generators (CPGs) as the basic
control architecture, inspired by biological observations. The
method of multivariable harmonic balance (MHB) is employed
to characterize the condition, approximately, for the closed-loop
system to have a natural oscillation as its trajectory. Necessary
and sufficient conditions for satisfaction of the MHB equation are
derived in the forms useful for control design. It is shown that
the essential design freedom can be captured by two parameters,
and the design parameter plane can be partitioned into regions,
in each of which approximate entrainment to one of the natural
modes, with an error bound, is predicted by the MHB analysis.
Control mechanisms underlying natural entrainment, as well as
limitations and extensions of our results, are discussed.

I. INTRODUCTION

During animal locomotion, periodic body movements gen-
erate propulsion through interactions with the surrounding
environment. The associated energy consumption appears to
be minimized by exploiting a mechanical resonance. For
instance, the cycle period of human walking would be related
to the natural frequency of the leg as a pendulum [1]. More
generally, optimal controls of mechanical systems, to achieve
a sustained periodic motion most efficiently, would often result
in trajectories resembling a natural mode of oscillation. A
fundamental question is how a feedback controller can be
designed to achieve an oscillation at (or near) a natural mode
as a stable limit cycle for the closed-loop system.

Rhythmic body movements (or “gaits”) during animal lo-
comotion are controlled by the neuronal circuit called the
central pattern generator (CPG) [2]–[4]. CPGs are biological
oscillators comprising a group of neurons interconnected in a
specific manner to generate coordinated oscillations (or pat-
terns) of neuronal membrane potentials. Placed in a feedback
loop, a CPG activates rhythmic muscle contractions, where
the commanded pattern is modified through sensory signals in
response to changes in the environment and body mechanics.
In this way, CPG integrates the trajectory planning with
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feedback regulation, and provides a fundamental nonlinear
control architecture for achieving adaptive pattern formation.

The architecture of CPGs is often given as coupled oscil-
lators with distributed sensing and actuation. For undulatory
swimming animals like leeches and lampreys, for instance,
the CPG is formed as a chain of segmental oscillators, each
of which receives local sensory feedback and induces local
muscle contraction [5], [6]. The intersegmental communication
was considered essential for coordinating the phase timing
of the oscillators so that traveling body waves are generated.
However, experiments have shown that, even if the nerve cord
connecting the segmental oscillators is severed in the mid-
body, the leech can still swim by coordinating the head and
tail undulations through local controls and mechanical linkages
[7]. Thus, CPG-based control systems can be robust against
failures. Moreover, the result suggests that decentralized con-
trols by uncoupled oscillators can achieve coordination.

In this paper, we take a first step toward exploring the
potential of CPGs as a basic control unit to achieve desired
oscillations for mechanical systems. The long-term goal is to
establish a CPG-based feedback control theory to generate
efficient gaits for robotic locomotor systems. Such theory
would enable development of biologically-inspired robotic
systems that are robust against failures and adaptive to changes
in the operating condition. Exploitation of a resonance, or
natural oscillations, would have an obvious advantage for
increased energy efficiency, but would also make the sys-
tem conform to, rather than compete against, environmental
constraints, leading for instance to swimming gaits that are
least disturbing to the fluid. As a byproduct, such theory
would contribute to advancing biological understanding of gait
generation mechanisms in animal locomotion. To this end, this
paper considers a natural entrainment problem, where we seek
to design a controller comprising CPG units for mechanical
systems so that the closed-loop system oscillates at (or near)
a prescribed mode of natural oscillation.

For single degree-of-freedom (DOF) systems, the natural
entrainment problem has been addressed in the literature
[8]–[12] using harmonic balance (see e.g. [13], [14]). Har-
monic balance is a well-known method for oscillation analysis
that approximates periodic signals by sinusoids. The method
is approximate in nature, but has been successfully applied
to a variety of engineering problems [15]–[18]. References
[8]–[12] used the harmonic balance to analyze the feedback
connection of a one-DOF oscillatory mechanical system and
a simple CPG called the reciprocal inhibition oscillator [19],
[20]. The harmonic balance equation accurately predicted
when the closed-loop oscillation had a frequency close to the
resonance.
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For multi-DOF systems, the natural entrainment problem
has not been addressed. While the classical harmonic balance
method has been used mostly for estimating the frequency
and amplitude of a single variable oscillation, relative phases
and amplitudes of multivariable oscillations are of paramount
importance in characterizing coordinated rhythmic motion
pattern. Recently, we have developed the method of multivari-
able harmonic balance (MHB) to analyze CPGs consisting of
multiple identical neurons (with no connection to mechanical
systems) [21]. A simple characterization of the oscillation
profile (frequency, amplitudes, phases) was given in terms of
the neuronal interconnection matrix. The MHB method, like
the original harmonic balance, has no theoretical guarantee
for accuracy of the predicted oscillation profile, but numerical
simulations of various CPGs have shown that the predictions
are reasonably accurate [21]–[23]. Moreover, it has also been
shown [24] that the MHB method provides an exact estimate
of the oscillation profile when the CPG has a certain structure.

The present paper extends the one-DOF result in [12]
for multi-DOF linear mechanical systems. Motivated by the
severed nerve cord experiment on leeches mentioned above,
we consider distributed feedback controllers with multiple
CPG units of the reciprocal inhibition oscillators. In particular,
an n-DOF system with m pairs of sensors and actuators
is driven by m CPG control units, each placed between a
sensor/actuator pair. The CPGs are uncoupled to each other
except for the indirect communication through the mechanical
linkage with local sensory feedback. Unlike the single-DOF
case, the natural entrainment problem involves matching of not
only the frequency but also the mode shape. This additional
complexity, together with the simple decentralized control
structure, makes the problem substantially more difficult.

To gain insights into the natural entrainment mechanism,
we will first focus on a class of systems motivated by biome-
chanics of animal body, where sensors, actuators, stiffness,
and damping, are all collocated. A necessary and sufficient
condition on the controller parameters is obtained for the
MHB equation to have a solution at a given frequency and
mode shape. It is shown that the essential design freedom is
captured by two parameters: the intrinsic CPG frequency ωo

and the feedback gain η. The result allows us to draw a mode
partition diagram, where the parameter plane (ωo, η) is divided
into regions, in each of which entrainment to a natural mode of
oscillation is achieved approximately, with an explicit bound
on the entrainment error. The assumption of collocation will
then be removed and the results are extended for more general
mechanical systems, with additional difficulties identified and
discussed. A numerical example is given to illustrate the
method and assess approximation errors inherent with the
MHB method. Finally, we discuss what we have learned
from our results regarding control mechanisms underlying
natural entrainment. Limitations and possible extensions of our
results are also discussed, where the controller designed by our
method is proven to guarantee existence of Y-oscillations [25].

The MHB method is not perfectly accurate in general, but
our developments are rigorous in the sense that all conditions
are exactly derived from the MHB equation with no approxi-
mations. While lemmas and theorems are precisely stated, we

choose to make less accurate but more insightful statements
in the texts for brevity. For instance, we say “the controller
achieves natural entrainment” when we mean “the MHB
equation for the given controller has a natural oscillation as a
stable solution.” All statements become accurate if interpreted
within the MHB framework. Some preliminary lemmas and all
proofs are given in the Appendix. A conference version of this
paper has appeared in [26], where some results for collocated
systems were reported without proofs.

We use the following notation. Let  :=
√
−1. For complex

matrices A and B, A⊗B denotes the Kronecker product, B† is
the Moore-Penrose inverse, and =(A) is the imaginary part of
A. When A is real symmetric, A > 0 and A ≥ 0 mean that it
is positive definite and positive semidefinite, respectively. The
symbols R+ and In denote the set of real positive numbers
and the set of integers from 1 to n, respectively. For a vector
v ∈ Rn with the ith entry vi, the n×n diagonal matrix whose
(i, i) entry is vi is denoted by diag(v) or diag(v1, . . . , vn).
For two sets F1 and F2 sharing the same underlying space,
F1\F2 is the set of elements in F1 that do not belong to F2.

II. PROBLEM FORMULATION AND APPROACH

A. Natural Entrainment Problem

Consider the class of mechanical systems given by

Jẍ + Dẋ + Kx = Bu, y = Cx, (1)

where x(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rm are the
generalized coordinates, inputs, and outputs, respectively, and
the inertia, damping, and stiffness matrices are symmetric and
satisfy J > 0, D ≥ 0, and K ≥ 0. Note that the number of
inputs is assumed to be the same as the number of outputs. For
later reference, let us recall that a natural mode of (1) is defined
by a pair of the natural frequency ωi ∈ R+ and mode shape
ξi ∈ Rn satisfying (K −ω2

i J)ξi = 0 with ξi 6= 0. There are n
natural modes, (ωi, ξi) with i ∈ In, for the n-DOF system. We
assume that the natural frequencies are distinct, and arrange
them in the ascending order: 0 ≤ ω1 < ω2 < · · · < ωn. We
will develop a design theory for the linear system (1), but as
for any linear theory, our results are expected to be applicable
to (weakly) nonlinear systems whose dynamics near a targeted
oscillatory trajectory can be captured reasonably well by (1).
A design example will illustrate this point later in Section V.

To entrain the mechanical system (1) we use the reciprocal
inhibition oscillator as the basic control unit. The reciprocal
inhibition oscillator is a simple CPG consisting of two neurons
with mutually inhibitory synaptic connections as shown in
Fig. 1, where N represents a neuron and µ > 0 is the strength
of the synaptic connections between the neurons. The neuronal
dynamics N is modeled by the following mapping from the
synaptic input w to the membrane potential at axon (or spike
frequency) v [12]:

v = ψ(q), q = b(s)w, b(s) :=
2ωos

(s + ωo)2
,

where q is an internal variable (e.g. membrane potential at
soma), and ωo > 0. We choose the band pass filter b(s) to
embed the time lag and adaptation effects of the cell membrane
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and synapse. A typical simple model for neuronal dynamics
would capture the time lag effect by a low pass filter [27], but
the adaptation (high pass) effect is also included here because
it is essential for a reciprocal inhibition oscillator [20]. The
static nonlinearity ψ : R → R captures the threshold and
saturation effects; it is typically a sigmoid function and the
following properties are assumed:

• ψ is odd, bounded, and strictly increasing.
• ψ(x) is strictly concave on x > 0, and ψ′(0) = 1.

We denote by Ψ the class of functions satisfying these condi-
tions. For example, tanh(x) belongs to this class.
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Fig. 1. Reciprocal inhibition oscillator CPG
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Fig. 2. CPG control unit

Following the development in [12], we place the control unit
in Fig. 2 for each input/output pair (ui, yi) of the mechanical
system, where gi and hi are feedback gains and the block
labeled as “CPG” represents the system in Fig. 1. This
architecture is motivated by the biological control mechanism
where the neurons in the CPG receive sensory feedback [28],
and the membrane potentials of the neurons are used for
muscle activation [29].

The CPGs share the same center frequency ωo in the band
pass filter and synaptic strength µ. Let qi(t) := [ qi1 qi2 ]T ∈
R2 be the internal variable for the ith CPG unit and define
q(t) ∈ R2m by stacking qi(t) in a column. The set of m units
can be written as

q = b(s) (MΨ(q) + Hy) , u = GΨ(q) (2)

where, with the k × k identity matrix denoted by Ik,

g := [g1 · · · gn]T, G := diag(g) ⊗ lT, M := Im ⊗ Mo,
h := [h1 · · · hn]T, H := diag(h) ⊗ l, l := [1 − 1]T,

Mo := −µ

[
0 1
1 0

]
, Ψ := ψI2m.

Reference [12] has shown that, with y(t) ≡ 0 and µ > 1,
the internal variable qi in the ith CPG autonomously oscillates,
and qi1 and qi2 are antiphase to each other; qi1(t) = −qi2(t).
The harmonic balance method predicts the frequency of the
autonomous oscillation to be the center frequency ωo of b(s).
For this reason, ωo is an approximated intrinsic frequency of
the CPG, and we call it the CPG frequency. In the presence
of arbitrary input y, the structure of H guarantees that the

antiphase property of each CPG oscillation is preserved and

lim
t→∞

|qi1(t) + qi2(t)| = 0, (3)

for any initial states qi(0) and q̇i(0) [12].
The closed-loop system consisting of the mechanical system

(1) and the CPG controller (2) is described by the kernel
representation:

G(s,Ψ)z = 0, z :=
[

x
q

]
, (4)

G(s,Ψ) :=
[

Js2 + Ds + K −BGΨ
b(s)HC b(s)MΨ − I

]
. (5)

We consider the feedback control system in (4) and address
the following problem.

Natural Entrainment Problem: Characterize a do-
main of the controller parameter space in which en-
trainment to a prescribed mode of natural oscillation
is achieved approximately, and obtain a bound on the
entrainment error.

Formulation of the problem in the approximate setting is
motivated by multiple factors; (a) allowing a small entrain-
ment error is expected to substantially enlarge the feasible
domain of controller parameter space as in the one-DOF case
[12], providing more flexibility in the design, (b) a small
entrainment error will not cause significant degradation in
performance for practical purposes, and (c) exact analysis of
limit cycles is extremely difficult for systems of dimension
higher than two. We shall address the problem using an
approximate method based on the idea of harmonic balance
and describing functions. Numerical experiments will be used
later in Section V to illustrate that our approximate results can
be reasonably accurate. Throughout the paper, the mechanical
system (1) and the static nonlinearity ψ ∈ Ψ in the CPGs are
assumed to be given.

B. Multivariable Harmonic Balance

To characterize an oscillation profile of the closed-loop
system (4), assume that (4) has a periodic solution z(t) with
frequency ω. We shall approximate z(t) by sinusoidal signals.
In this case, we have

xi(t) ∼= ri sin(ωt + ϕi), (6)

qi(t) ∼=
[

ai sin(ωt + φi)
−ai sin(ωt + φi)

]
, (7)

for some amplitudes ri, ai > 0, and phase parameters ϕi, φi ∈
R, where i ∈ In in (6), and i ∈ Im in (7), and the two signals
in qi(t) are antiphase due to (3), and all signals oscillate with
zero bias (the average over a cycle is zero) because the static
gain of the neuronal dynamics is zero (b(0) = 0) and ψ is an
odd function. Let ẑ ∈ Cn+2m be the phasor of z(t):

ẑ =
[

x̂
q̂

]
,

x̂i := rie
ϕi ,

q̂i := α̂il, α̂i := aie
φi ,

where x̂ ∈ Cn and q̂ ∈ C2m are the vectors specified by their
ith entries x̂i ∈ C and q̂i ∈ C2, respectively. Similarly, we
define α̂ ∈ Cm by stacking α̂i in a column, which contains
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all the information for q̂. When the input is a sinusoid, the
nonlinearity ψ may be approximated by

ψ(z) ∼= κ(a)z for z := a sinωt,

κ(a) :=
4
aπ

∫ π/2

0

ψ(a sin θ) sin θ dθ,

where κ(a) is called the describing function [14], representing
the effect of the static nonlinearity ψ by the amplitude-
dependent linear gain κ(a). It was shown in [12] that κ(a)
for ψ ∈ Ψ takes a value in the interval (0, 1) when a > 0,
and κ is strictly decreasing from 1 to 0 on a > 0.

For a set of fixed amplitudes ai of qi-oscillations, the non-
linear function ψI(qi) may be approximated by the describing
function κ(ai)qi. In this case, the CPG control unit in Fig. 2
is quasi-linearized to have the transfer function ri(s) from yi

to ui, where
ri(s) := 2giκipi(s/ωo), κi := κ(ai),

pi(s) :=
2his

s2 + 2(1 − µκi)s + 1
.

(8)

Note that pi(s/ωo)l is the transfer function from yi to qi. Ac-
cordingly, the closed-loop system (4) is also quasi-linearized
and is described by

G(s,Φ)z = 0, Φ := diag(κ1, · · · , κm) ⊗ I,

where Φ is an amplitude-dependent matrix gain that approx-
imates the nonlinear function Ψ for sinusoidal inputs. If the
closed-loop system (4) has a periodic solution z that can be
approximated by sinusoids as in (6) and (7), then the signals
may be estimated by harmonic solutions to the quasi-linear
system. Such solutions can be found by solving

G(ω, Φ)ẑ = 0

for (ω, ẑ). This is what we call the multivariable harmonic
balance (MHB) equation.

We have found that an alternative description of the quasi-
linear system is more directly useful for our analysis. Elimi-
nating q from G(s,Φ)z = 0 and finding an equation for x, we
obtain an equivalent quasi-linear system

A(s)x = 0, A(s) := Js2 + Ds + K − BR(s)C,

R(s) := diag(r(s)).
(9)

Similarly, the MHB equation reduces to

A(ω)x̂ = 0, α̂i = pi(jω/ωo)ŷi, κi := κ(|α̂i|) (10)

where ŷi is the ith entry of ŷ := Cx̂.
The basic idea of the MHB method [21] is the following.
• If the MHB equation (10) has a solution (ω, x̂, α̂), then

the system (4) is expected to possess an oscillatory
trajectory, approximately given by xi(t) ∼= =[x̂ie

ωt] and
qi(t) ∼= =[α̂ie

ωt]l, or equivalently, (6) and (7).
• The estimated oscillation (ω, x̂, α̂) is expected to be

stable if the associated quasi-linear system (9), defined
for the amplitudes ai := |α̂i|, is marginally stable, with
a pair of poles ±ω on the imaginary axis and the rest
in the open left half plane.1

1We shall refer to this property the marginal stability condition, which is
stronger than the usual notion of marginal stability in that multiple pairs of
nonrepeated poles are not allowed on the imaginary axis.

For given values of mechanical parameters (J,D,K,B,C)
and controller parameters (ωo, µ, g, h), the profile of closed-
loop oscillations can be estimated as (6) and (7) by solving the
MHB condition (10) for (ω, x̂, α̂). Note that A(ω) depends on
α̂i through κi, and this makes it nontrivial to solve the MHB
condition. The solution is not unique in general, and the MHB
method may predict existence of multiple oscillations for the
closed-loop system. The marginal stability of the associated
quasi-linear system helps to identify the stable oscillation(s)
among those predicted. The idea behind this heuristics can
be found in [13], and is discussed further in Section VI. We
shall call (ω, x̂, α̂) a stable solution of the MHB equation
if it satisfies (10) and the associated quasi-linear system (9)
satisfies the marginal stability condition as described above.

In the developments below, the phasor α̂ is possibly com-
plex, and all the other parameters are real, with ω, ωo, and
µ being positive. In particular, phasors x̂ and ŷ will be
real vectors since the mode shapes ξ` for ` ∈ In, that we
aim to achieve (i.e., x̂ = ξ`) by feedback control, are real
vectors. This means that every variables xi(t) oscillate inphase
or antiphase to each other, which is a property typical to
natural oscillations of mechanical systems without interactions
with the environment. The phasor α̂i would be complex with
nonzero imaginary part when αi(t) oscillates with a phase that
is not a multiple of π with respect to xi(t). We shall avoid
trivial cases by restricting our attention to oscillations such that
ŷiα̂i 6= 0 for all i ∈ Im. That is, we consider the nontrivial
cases where every CPG unit receives a nonzero input and
oscillates. The CPG control unit in Fig. 2 has the symmetry
such that the dynamical mapping from yi to ui for (gi, hi) is
the same as that for (−gi,−hi). For instance, two units for
(gi, hi) = (3,−5) and (−3, 5) have an identical input/output
property. Thus, the sign of gi is not important and can be
chosen arbitrarily by adjusting the sign of hi, or vice versa.
In our results presented later, we have taken the sign of hi to
be the same as the sign of ŷi.

III. NATURAL ENTRAINMENT OF COLLOCATED
MECHANICAL SYSTEMS

In this section, we consider a special class of mechanical
systems (1) to gain analytical insights into mechanisms under-
lying natural entrainment. We will later discuss an extension
of our results to a more general class of systems. To this end,
let us introduce the following:

Assumption 1: The matrices B and C are square nonsingu-
lar (m = n), and

C = BT, D = ρK, K = BKC, K := diag(k1, · · · , km)

for positive scalars ρ and ki with i ∈ Im.
The conditions in Assumption 1 are motivated by biological

systems where the actuators, sensors, stiffness and damping
elements are all located at the same position. A musculo-
skeletal body can be viewed as a set of multiple rigid links
connected by rotational joints. At each joint, the muscle
and tendon serve as the origin of visco-elastic property, in
addition to taking the role of torque actuator. Moreover,
the muscle length, directly related to the joint angle, is fed
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back to the motor control system through stretch receptors.
Thus, the collocation arises naturally in biomechanics. In this
case, the stiffness and damping matrices K and D share
the same structure; a diagonal matrix sandwiched by the
actuation matrix B and its transpose. This fact can readily be
verified through the principle of virtual work. The additional
assumption of Rayleigh damping D = ρK is commonly
used in structural dynamics, and is introduced so that the
analysis becomes simple enough to provide insights into the
natural entrainment mechanism. We shall refer to the system
(1) satisfying Assumption 1 as the collocated system.

A. Difficulty in Exact Natural Entrainment

Consider the problem of designing a CPG controller that
achieves entrainment to a natural mode of oscillation exactly,
within the framework of the MHB method. That is, we seek
conditions on the controller (2) such that the MHB equation
(10) has a solution (ω, x̂, α̂) with ω = ω` and x̂ = ξ` for a
prescribed mode ` ∈ In. It is straightforward to show [30] that
the set of all such controllers is given by

µ =
1

κ(a)
, gi =

ζ`kiŷi

aκ(a)
, hi =

a$

ŷi
,

where

ζ` :=
ρω`

2
, $ :=

1
2

(
ωo

ω`
− ω`

ωo

)
. (11)

In this case, the phasor of q is specified from α̂i = −a.
The controller is parametrized by two arbitrary real positive
scalars: the amplitude of q-oscillation a and the intrinsic RIO
frequency ωo. Thus we have a very simple parametrization of
all controllers to achieve entrainment to the natural oscillation
(ω`, ξ`).

However, the resulting oscillations are not always stable.
When the above controller is used for entrainment to the lowest
mode (ω1, ξ1) or to the highest mode (ωn, ξn), the associated
quasi-linear system (9) satisfies the marginal stability condi-
tion if and only if ωo is chosen such that ωo < ω1 or ωn < ωo,
respectively. On the other hand, the system (9) is unstable for
any values of (a, ωo) when 1 < ` < n. This means that the
CPG controller (2), with any choice of the parameters, would
not be able to achieve entrainment to an intermediate mode
of natural oscillation for collocated systems of three or higher
DOF. This negative prediction of the MHB analysis has been
confirmed to be correct through numerical simulations of some
example systems. These results can be found in [30] and are
not reported here for brevity.

Given the limitation in precisely achieving a natural oscil-
lation, we shall relax the control specification such that the
desired frequency may not exactly coincide with, but is close
to, a natural frequency, while a natural mode shape is exactly
enforced. Thus, in the sections that follow, we consider the
control design to achieve entrainment to (ω, ξ`) with ω ∼= ω`.
It turns out that this relaxation reveals a certain robustness
property of the natural entrainment as in the case of one-DOF
systems [12]. In particular, we will show that a large region
of a controller parameter space leads to approximate natural
entrainment to (ω, ξ`) with a bound on the error |ω − ω`|.

Moreover, the parameter space, if chosen appropriately, can be
partitioned into multiple regions, in each of which approximate
entrainment to (ω`, ξ`) or (ωo, ξ`) with ` ∈ In is achieved. To
this end, we shall first identify the essential parameter space
in the next section.

B. Essential Parameters for Control Design

Let us first write down a necessary and sufficient condition
for an oscillation profile (ω, x̂, α̂) with x̂ := ξ` to be a solution
to the MHB equation (10). Exploiting the collocation structure
of the mechanical system (1) as described in Assumption 1, the
MHB condition can be decomposed into m scalar equations
for harmonic balance of each input/output channel.

Lemma 1: Let the mechanical system (1), controller (2),
and an oscillation profile (ω, x̂, α̂) be given. Suppose Assump-
tion 1 holds, x̂ = ξ` for some ` ∈ In, and hiŷi 6= 0 for all
i ∈ Im, where ŷ := Cx̂. Then the MHB equation (10) is
satisfied if and only if

f`(ω) = 1 − µκ(|α̂i|), g`(ω) =
gihi

µki
, h`(ω) =

hiŷi

α̂i
, (12)

hold for all i ∈ Im, where

$o :=
1
2

(
ω

ωo
− ωo

ω

)
, $` :=

1
2

(
ω

ω`
− ω`

ω

)
, (13)

f`(ω) :=
$o$`

ζ`
, g`(ω) :=

ω$o($2
` + ζ2

` )
ω`($o$` − ζ`)

,

h`(ω) := $o

(
$`

ζ`
+ 

)
.

(14)

Recall that there are 2m + 2 real scalar parameters for the
controller; µ, ωo, gi, and hi for i ∈ Im. By requiring that
the MHB equation have a solution (ω,ξ`, α̂), the freedom in
the choice of the controller parameters substantially reduces.
In particular, condition (12) implies that the uniformity and
proportionality conditions must be satisfied, i.e., (i) the am-
plitudes of the sensory feedback, hiŷi, are uniform over all
CPG units (or i ∈ Im), and (ii) the overall feedback gain,
gihi, is proportional to the stiffness of the input/output channel
ki. Based on these observations, let us introduce a normalized
feedback gain η := (gihi)/(µki). Once three parameters ωo, η,
and µ are specified, the rest of the parameters in the controller
(g, h) as well as oscillation profile (ω, α̂) can be determined
by solving (12). This process is summarized as follows.
Procedure 1:

1. Let a desired mode of oscillation ` and the controller
parameters ωo, η, and µ be given.

2. Solve g`(ω) = η for ω > 0.
3. Solve f`(ω) = 1 − µκ(a) for a > 0.
4. Set the feedback gains (gi, hi) for i ∈ Im by

gi :=
µkig`(ω)

hi
, hi :=

a|h`(ω)|
ŷi

. (15)

5. For the controller (µ, ωo, g, h), the MHB equation has a
solution (ω, ξ`, α̂) with α̂i := a|h`(ω)|/h`(ω).

Procedure 1 shows that the freedom in the control design, to
achieve a prescribed mode shape x̂ = ξ`, is embedded in the
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triple (ωo, η, µ). We aim to determine a condition on these
parameters under which the resulting oscillation frequency ω
is close to ω` so that natural entrainment to the specified mode
is approximately achieved. Note that the parameters (ωo, η)
determine the value of ω in Step 2 of Procedure 1, while
the parameter µ does not influence the oscillation frequency
but simply scales the amplitude a of the q-oscillation as in
Step 3. Thus, (ωo, η) are identified as the essential controller
parameters.

This conclusion is further justified by the fact that the
stability property of the resulting oscillation can be estimated
from (ωo, η) only. In particular, the quasi-linear system asso-
ciated with the CPG controller specified by (ωo, η, µ) through
Procedure 1 is given by (9) with

ri(s) =
4η(1 − f`(ω))kiωos

s2 + 2f`(ω)ωos + ω2
o

, (16)

where ω is determined by g`(ω) = η in Step 2 of Procedure 1.
We see that the quasi-linear system, and therefore its marginal
stability property as well, are independent of the choice of µ
and are solely determined by (ωo, η).

For this reason, we fix µ ≥ 1 arbitrarily in the rest of our
discussion, and consider the effect of the essential controller
parameters (ωo, η) on the resulting oscillation frequency. The
important question is what values of (ωo, η) lead to natural
entrainment approximately, i.e., ω ∼= ω`.

C. Mode Partition Diagram

In the design of the CPG controller, the pair (ωo, η) must
be chosen feasible, i.e., the equations in Steps 2 and 3 in
Procedure 1 must be solvable for ω > 0 and a > 0. Since
the range of the function g`(ω) on ω > 0 is the entire set of
real numbers [12], the equation in Step 2 is always solvable
for ω > 0. The solution may not be unique, and we will visit
this issue shortly. Since ψ ∈ Ψ, the range of the describing
function is 0 < κ(a) < 1 on a > 0. Hence, a pair (ωo, η)
is feasible if and only if a solution ω to g`(ω) = η (which
always exists) satisfies

1 − µ < f`(ω) < 1. (17)

It appears difficult to obtain an exact characterization of the
feasible set in a simple manner. However, if we replace (17)
by

0 < f`(ω) < 1, (18)

then a subset of the feasible set is given by

F` := { (ωo, η) ∈ R2 | η(η − λ`(ωo)) > 0 },
λ`(ωo) := ζ`$,

(19)

where ζ` and $ are defined in (11). More precisely, one can
show [12] that there exists ω > 0 such that g`(ω) = η and (18)
hold if and only if (ωo, η) ∈ F`, and that such ω is given as
the unique positive solution to g`(ω) = η. Let F be the union
of F` for all ` ∈ In. Although the set F may not include all
the feasible domain, it covers a large portion of the whole
parameter plane (ωo, η). This can be seen by visualizing F
in terms of its complement in R2, which comprises the line

η = 0, and the regions {(ωo, η) | λ1(ωo) ≤ η < 0, ωo < ω1}
and {(ωo, η) | 0 < η ≤ λn(ωo), ωo > ωn}.

In addition to the feasibility, we need to ensure during the
control design that (9) is marginally stable, and find a subset of
F in which the stability requirement is satisfied. A necessary
and sufficient condition for the marginal stability of (9) can
be given as follows.

Lemma 2: Let ` ∈ In and (ωo, η) ∈ F` be given. Define the
associated quasi-linear system by (9) and (16), where ω is the
unique positive solution to g`(ω) = η. Then the quasi-linear
system is marginally stable with a pair of poles at ±ω and
the rest in the open left half plane if and only if

τ`(ωo, η) > τi(ωo, η), ∀ i ∈ In\{`}, (20)

where τi is a function of (ωo, η) and is defined for i ∈ In

as follows. If (ωo, η) ∈ Fi, let ω be the unique solution to
gi(ω) = η and set τi := fi(ω). If (ωo, η) 6∈ Fi, then let
τi := 0.

A given pair (ωo, η) ∈ F may belong to multiple sets Fi for
several values of i. In this case, Procedure 1 with ` := i will
generate multiple controllers and predict the corresponding
oscillation profiles. Lemma 2 states that at most one of these
oscillations satisfies the marginal stability condition and it is
the one having the largest value of τi(ωo, η). It can readily
be seen from the basic equation τi = 1 − µκ(a) that τi is
positively correlated with the amplitude a of the q-oscillation.
Thus, the oscillation with the largest amplitude is expected to
be stable.

Let us define the stable domain S to be the subset of the
feasible domain F in the controller parameter space (ωo, η)
such that each element in S leads to a stable solution of the
MHB equation. In view of Lemma 2, S is the union of S` for
all ` ∈ In, where

S` := {(ωo, η) ∈ F` | τ`(ωo, η) > τi(ωo, η), ∀ i ∈ In\{`}}.
(21)

Clearly, every two sets S` and Sl are disjoint for ` 6= l because
(ωo, η) ∈ S` implies τ` > τl and hence (ωo, η) 6∈ Sl. Also note
that almost all elements of F belong to S, with the exceptions
being those (ωo, η) for which the maximum of τi over i is
attained by two or more values of i. In fact, one can show [30]
that the difference between F and S is just a finite collection of
lines in R2. Finally, each set S` can be partitioned into regions
with positive and negative gains η by noting that λ`(ωo) is a
monotonically increasing function satisfying λ`(ω`) = 0. In
particular, η is positive/negative if ωo−ω` is positive/negative.
Now we have a summary.

Corollary 1: The following statements hold.

• The feasible domain F almost coincides with the stable
domain S in the sense that, for each ωo, there are at most
a finite number of η such that (ωo, η) ∈ F\S.

• The stable domain S can be partitioned into disjoint sets
S` for ` ∈ In.

• Each S` can be partitioned into O`` and Oo` with a
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boundary B`, where

O`` := {(ωo, η) ∈ S` | (ωo − ω`)(η − λ`(ωo)) > 0},
Oo` := {(ωo, η) ∈ S` | (ωo − ω`)η < 0},
B` := {(ωo, η) ∈ S` | η 6= 0, ωo = ω`}.

(22)

The two sets O`` and Oo` turn out to describe two parameter
regions for approximate entrainment to the natural frequency
ω` and to the intrinsic CPG frequency ωo, respectively, with
the mode shape being ξ` for both cases. It has been shown
[12] that f`(ω) := $o$`/ζ` is a strictly convex function
such that f`(ωo) = f`(ω`) = 0. Hence, condition (18) can be
visualized as two intervals near ωo and ω`, where the length
of each interval is small if ζ` is small. This means that if
a controller is designed from (ωo, η) ∈ F` and the closed-
loop system has an oscillatory trajectory, then the frequency
ω would be necessarily close to either the CPG frequency ωo

or the natural frequency ω`, provided the damping is small. A
formal statement of this fact, given below, is a main result of
this paper.

Theorem 1: Let ` ∈ In, µ ≥ 1, and (ωo, η) ∈ S` be given,
where S` is defined by (21). Let a controller (µ, ωo, g, h)
and oscillation parameters (ω, α̂) be (uniquely) determined by
Procedure 1. Then, (ω, ξ`, α̂) is a stable solution to the MHB
equation (10). Moreover, if ωo 6= ω`, then ω is close to either
ω` or ωo in the following sense:∣∣∣∣ω − ω`

ω`

∣∣∣∣ ≤ ∣∣∣∣ ζ`

$

∣∣∣∣ when (ωo, η) ∈ O`` (23)∣∣∣∣ω − ωo

ωo

∣∣∣∣ ≤ ∣∣∣∣ ζ`

$

∣∣∣∣ when (ωo, η) ∈ Oo`. (24)

The feasible domain F in the controller parameter space
(ωo, η) can be partitioned into n regions S` for ` ∈ In, in
which the MHB analysis predicts that the resulting closed-
loop system achieves entrainment to an oscillation (ω, ξ`)
with stability. Each S` can further be partitioned into two
regions in which the oscillation frequency is close to either the
natural frequency ω` or the CPG frequency ωo. In particular,
we have the oscillation (ω`, ξ`) in O``, and (ωo, ξ`) in Oo`,
approximately. The explicit characterizations of O`` and Oo`

allow us to calculate the boundaries and visually identify these
regions for all ` ∈ In on the (ωo, η)-plane. We call this picture
the mode partition diagram.

Figure 3 shows an example of such diagram for a three-link
mechanical arm system (see Section V for details). The vertical
lines indicate the natural frequencies. Each solid-colored area
represents a region O``, and each shaded area represents
Oo`. For instance, entrainment to the second mode of natural
oscillation would be achieved approximately if the controller
parameters are chosen at (ωo, η) = (1,−1). On the other hand,
if (ωo, η) = (0.1, 1) are chosen, the resulting oscillation would
have the first mode shape ξ1, but the frequency would be close
to the intrinsic CPG frequency ωo = 0.1 instead of the first
mode ω1 = 0.29.

IV. EXTENSION TO GENERAL MECHANICAL SYSTEMS

We now remove Assumption 1 and consider a general
class of mechanical systems. The collocation structure in

10
−1

10
0

10
1

−2

−1

0

1

2

ω
o
 [rad/s]

η

(a) (b) (c)

Fig. 3. An example of the mode partition diagram for a 3-DOF system
(ω1 = 0.292, ω2 = 1.92, ω3 = 5.15); solid pink: O11, shaded pink: Oo1,
solid blue: O22, shaded blue: Oo2, solid green: O33, shaded green: Oo3

Assumption 1 made it easy to reduce the MHB equation into
m sets of scalar equations for the m input/output channels
as in Lemma 1. For the general case, it is not obvious if
such decomposition is possible. It turns out, however, that it
is indeed possible. The key idea is to define the stiffness k`i

and damping d`i for each input/output channel i, with respect
to a given mode shape ξ`:

k` := Y −1
` B†Kξ`, d` := Y −1

` B†Dξ`,

ζ`i :=
ω`

2

(
d`i

k`i

)
, Y` := diag(Cξ`),

(25)

where i ∈ Im, and k`i and d`i are the ith entries of vectors
k` and d`, respectively. The rationale behind these definitions
is as follows. When x(t) sinusoidally oscillates with mode
shape ξ`, the phasor of the stiffness force is given by Kξ`.
If this force were to be generated by springs collocated with
the sensors and actuators, we should have BKCξ` = Kξ`,
where K is a diagonal matrix with the stiffness of the ith

input/output channel, k`i, on the ith diagonal. A solution K

to this equation, if any, is given by stacking k`i in (25) on
the diagonal. For collocated systems satisfying Assumption 1,
the parameters k`i and d`i are independent of ` and are given
by ki and ρki, consistently with our expectation. In the rest
of this paper, we assume that k`i and d`i are positive for all
` ∈ In and i ∈ Im.

With the definitions in (25), the MHB equation (10) can be
split into m sets of scalar equations, analogously to Lemma 1
for the collocated case.

Lemma 3: Let the mechanical system (1), controller (2),
and an oscillation profile (ω, x̂, α̂) be given. Suppose x̂ = ξ`

for some ` ∈ In and ω` > 0. Define the parameters in (25)
and assume k`i, d`i > 0 and hiŷi 6= 0 for all i ∈ Im. When
B has a full column rank, the MHB equation (10) is satisfied
if and only if

(I − BB†)Kξ` = 0 or ω = ω`, (26)

(I − BB†)Dξ` = 0, (27)

f`i(ω) = 1 − µκ(|α̂i|), g`i(ω) =
gihi

µk`i
, h`i(ω) =

hiŷi

α̂i
,

(28)
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hold for all i ∈ Im, where

f`i(ω) :=
$o$`

ζ`i
, g`i(ω) :=

ω$o($2
` + ζ2

`i)
ω`($o$` − ζ`i)

,

h`i(ω) := $o

(
$`

ζ`i
+ 

)
.

(29)

When B does not have a full column rank, conditions (26) and
(27) remain necessary, but (26)–(28) become only sufficient.

Condition (I − BB†)Kξ` = 0 in (26) means that the
stiffness force Kx during oscillations with the `th mode
shape x(t) = =[ξ`e

ωt] is in the range space of B so that
the set of actuators is able to provide the compensation
necessary for modifying the force in any desired manner.
A similar comment applies to condition (27) in terms of
the damping force Dẋ. When underactuated, these conditions
can be violated, in which case there is no controller of the
uncoupled CPG structure that achieves oscillations with the
mode shape ξ`. If the system is fully actuated (i.e., B has a
full row rank), then the conditions are automatically satisfied
because BB† = I , and this is why they do not show up in
Lemma 1. Condition (28) is identical to those given in (12)
for the collocated system, except that ζ` is now replaced by
ζ`i. The damping ratio ζ`i with respect to the mode shape
ξ` may no longer be uniform over all input/output channels
i ∈ Im. This complicates our theoretical developments to some
extent, but a result essentially analogous to Theorem 1 can
be obtained. To this end, let us consider essential controller
parameters and their feasible and stable domains for general
mechanical systems.

Following the development for the collocated systems, we
may define η`i := gihi/(µk`i) for i ∈ Im to be the essential
parameters. However, η`i depends on i in the general case,
and hence does not serve for our purpose of capturing the
essential design freedom by a minimal number of parameters.
However, it turns out that one of these parameters η`p for
an appropriately chosen i := p can serve as the essential
parameter η.
Procedure 2:

1. Let a desired mode of oscillation ` and the controller
parameters ωo, η, and µ be given.

2. Pick an integer p ∈ Im and solve g`p(ω) = η for ω > 0.
3. For each i ∈ Im, solve f`i(ω) = 1 − µκ(ai) for ai > 0.
4. Set the feedback gains (gi, hi) for i ∈ Im by

gi :=
µk`ig`i(ω)

hi
, hi :=

ai|h`i(ω)|
ŷi

. (30)

5. For the controller (µ, ωo, g, h), the MHB equation has a
solution (ω, ξ`, α̂) with α̂i := ai|h`i(ω)|/h`i(ω).

Procedure 2 is basically the same as Procedure 1, with a
major difference being that we now need to choose p ∈ Im.
The index p should be chosen in such a way that ω obtained in
Step 2 for a given η ∈ F` guarantees existence of ai in Step 3,
where F` is a feasible domain yet to be defined for the general
case. Recall from the collocated case that f`i(ω) = 1−µκ(ai)
is solvable for ai > 0 if and only if

1 − µ <
$o$`

ζ`i
< 1.

Since µ ≥ 1 and ζ`i > 0, this condition holds for all i ∈ Im

if and only if it holds for i = p, where p is the integer that
gives the smallest damping ratio, i.e.,

ζ` := min
i∈Im

ζ`i = ζ`p.

In this way, the index p in Step 2 can be uniquely chosen for
a given `. We can then define a feasible domain F` as in (19),
based on the fact that g`i(ω) = η has a unique solution ω > 0
and it satisfies 0 < f`i(ω) < 1 if and only if η(η − ζ`i$) > 0
holds.

Given ` ∈ In, (ωo, η) ∈ F`, and µ ≥ 1, Procedure 2
uniquely determines the feedback gains g and h as well as the
resulting oscillation profile (ω, ξ`, α̂). As before, the parameter
µ scales the oscillation amplitude of qi but has no effect on
the frequency. Moreover, it can be verified that the associated
quasi-linear system defined by (8) and (9) is independent of
the value of µ. Thus, we consider (ωo, η) to be the essential
controller parameters. As in the collocated case, the stable
domain S` is defined to be the subset of F`, in which the
associated quasi-linear system satisfies the marginal stability
condition. The main result for the general case is now stated.

Theorem 2: Let ` ∈ In, µ ≥ 1, and (ωo, η) ∈ S` be
given, where S` is defined above. Suppose conditions (26)
and (27) hold, and let a controller (µ, ωo, g, h) and oscillation
parameters (ω, α̂) be (uniquely) determined by Procedure 2.
Then, (ω, ξ`, α̂) is a stable solution to the MHB equation (10).
Moreover, if ωo 6= ω`, then ω is close to either ω` or ωo in the
sense stated in (23) or (24), where O`` and Oo` are defined
in (22).

Theorem 2 is a generalization of Theorem 1 where the as-
sumption of the collocated structure is removed. As before, the
result allows us to draw mode partition diagrams, but there are
certain limitations for the general case. The limitations arise
mainly from the absence of a simple analytical characterization
of the marginal stability condition like the one in Lemma 2,
leading to the lack of the first two statements in Corollary 1.

For the collocated case, the feasible domain F of the
controller parameter space practically coincides with the stable
domain S, and can be partitioned into disjoint sets S` for
` ∈ In, in which entrainment to an oscillation with the `th

mode shape is achieved. For the general case, it is difficult
to derive a simple characterization of S`. Because of this, we
were not able to determine whether S` and Sl are disjoint
for any ` 6= l. There may be some overlap between the two
regions, in which case, the same parameter (ωo, η) can lead to
two controllers achieving two different modes of oscillation.
Also, there may be some nontrivial gap between F and S.
If the parameter (ωo, η) happens to be chosen in the gap,
then Procedure 2 will generate controller(s) for those ` such
that (ωo, η) ∈ F`, but none of them will make the associated
quasi-linear system marginally stable, and hence none of the
resulting oscillations is expected to be stable.

In spite of these limitations, mode partition diagrams can
still be generated. It can readily be checked whether or not a
given pair (ωo, η`) ∈ F` belongs to S` by numerically calcu-
lating the roots of the characteristic equation det(A(s)) = 0.
The partition of S` into O`` and Oo` is easily done using the
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definitions in (22). The only difference from the collocated
case at this numerical level is that two regions S` and Sl could
overlap to each other, and this may require a separate figure
for each S` to clearly indicate the region.

V. NUMERICAL EXAMPLE

Consider a mechanical arm on a horizontal plane, formed
as a chain of three rigid links connected by two rotational
joints to each other. The ith link has mass mi and length 2`i,
and the first link is connected to the inertial frame through a
rotational joint. Mounted at the ith joint are a spring of stiffness
ki, a dashpot of damping coefficient ρki, and an actuator that
generate torque input ui. The equation of motion is then given
by

Jxẍ + Gxẋ2 + Dẋ + Kx = Bu, y = Cx, (31)

where xi is the angular displacement of the ith link, yi is the
relative angle between the ith and (i + 1)th links, ẋ2 is the
vector whose ith entry is ẋ2

i , and

Jx := Jo + SxQSx + CxQCx, Gx := SxQCx − CxQSx,

Q := LTML, C := BT, K := BKC, D := ρK,

M := diag(m1, m2, m3), K := diag(k1, k2, k3),

Jo := diag
(
m1`

2
1, m2`

2
2, m3`

2
3

)
/3,

Sx := diag(sin x1, sin x2, sin x3),

Cx := diag(cos x1, cos x2, cos x3),

B :=

[
1 −1 0
0 1 −1
0 0 1

]
, L :=

[
`1 0 0
2`1 `2 0
2`1 2`2 `3

]
.

We use the following parameter values:

`i = 0.5, mi = 1.0, ki = 1.0, ρ = 0.1,

for i ∈ I3. By linearizing (31) around the origin, we obtain
(1) with J := Jo +Q, and its natural modes (ω`, ξ`) are given
by Table I. The mode partition diagram for the link system
are given by Fig. 3. Based on this diagram, we selected the
controller parameters (ωo, η) as (a), (b) and (c) in Table II so
that the entrained oscillation profiles are close to the 1st, 2nd

and 3rd natural modes, respectively. For each case, we have
designed the feedback gains (g, h) by (15), where µ = 1.5
and ψ(x) = tanh(x).

TABLE I
NATURAL MODES OF THE MECHANICAL ARM

` 1st mode 2nd mode 3rd mode
ω` 0.292 1.92 5.15

ξ`

[
0.402
0.615
0.678

] [
0.476

−0.242
−0.846

] [
0.291

−0.654
0.698

]

First, the accuracy of the MHB method has been evaluated
in comparison with simulations of the linearized system (1).
In each case, a steady state oscillation of x(t) was observed,
and was approximated by Fourier series truncation x(t) ∼=
=[x̂SIMeωSIM(t−to)], where the time shift to was chosen so that
the imaginary part of the phasor vector x̂SIM has a minimum

TABLE II
FEEDBACK GAINS DESIGNED FOR THE THREE MODES

(a) (b) (c)
` 1 2 3

(ωo, η) (0.2,−1.0) (0.5,−1.0) (3.0,−1.0)

g

[
0.0118

0.00627
0.00184

] [
0.0406
0.0612
0.0515

] [
0.0913
0.296
0.424

]

h

[
−127
−239
−813

] [
−36.9
−24.5
−29.1

] [
−16.4
−5.06
−3.54

]

norm. The results are summarized in Table III, where ωMHB is
the estimated frequency, and the errors are defined by

ePRD :=
|ωMHB − ωSIM|

ωSIM

, eω :=
|ωSIM − ω`|

ω`
,

ex :=
‖x̄SIM − ξ`‖

‖ξ`‖
, x̄SIM :=

x̂SIM

‖x̂SIM‖
.

We see that the errors ePRD and ex are small, and the error
bound eω < ζ`/$ is satisfied. Thus, the MHB method
provided fairly accurate result. Next, we simulated the original

TABLE III
EVALUATION BY LINEAR SIMULATIONS

ωMHB ωSIM ePRD eω ex ζ`/$
(a) 0.30 0.30 0.1% 3.3% 0.0% 3.8
(b) 1.99 1.99 0.2% 3.9% 0.3% 5.4
(c) 6.25 6.17 1.2% 20.0% 4.3% 45.4

TABLE IV
NONLINEAR SIMULATION RESULTS

‖x̂SIM‖ ωSIM ωNAT

(a) 1.02 0.30 0.29
(b) 1.02 1.58 1.56
(c) 0.95 3.98 2.91

system (31) with (g, h) designed above to evaluate applica-
bility of the MHB method for nonlinear systems, for which a
natural oscillation is defined as a periodic initial state response
with ẋ(0) = 0 and ρ = 0. The simulated oscillations are
compared with the natural oscillations numerically found by
searching for an initial displacement xo and period T such that
f(xo, T ) := ‖x(T ) − xo‖2 + ‖ẋ(T )‖2 = 0 when x(0) = xo

and ẋ(0) = 0. To find a particular mode, f(xo, T ) was
minimized using “fminsearch” in Matlab with the initial point
of optimization set from the corresponding mode shape of
the linearized system. This involved optimization with four
scalar parameters in xo ∈ R3 and T ∈ R with the objective
function value f(xo, T ) evaluated by simulation of a nonlinear
system with six state variables. More details are described in
[30]. Snapshots of the simulated oscillations and the natural
oscillations during a half period are depicted in Table V. The
simulated frequency ωSIM, oscillation amplitude ‖x̂SIM‖, and
natural frequency ωNAT are summarized in Table IV. Although
ωSIM is not very close to ωNAT for (c), the oscillation shapes in
Table V are similar. Thus, we conclude that the CPG controller
roughly achieved the natural entrainment for the nonlinear
system (31).
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TABLE V
NONLINEAR MODE SHAPES AND ACHIEVED OSCILLATIONS

Natural Modes Simulation Results

(a)

(b)

(c)

VI. DISCUSSION

A. Control Mechanisms for Natural Entrainment

We have identified (ωo, η) to be the essential controller
parameters, and found regions O`` with ` ∈ In on the
parameter plane in which entrainment to the `th mode of
natural oscillation is achieved approximately. The definition
of O`` in (22) reveals that the feedback gain η should be
positive/negative when ωo is chosen to be greater/smaller than
ω`: {

ωo > ω` ⇒ η > ζ`$ > 0,
ωo < ω` ⇒ η < ζ`$ < 0.

(32)

Moreover, a bound is obtained on the entrainment error,
which is defined as the difference between the targeted natural
frequency ω` and the actual oscillation frequency ω. The error
bound |ζ`/$| in (23) is smaller if the damping ratio ζ` is
smaller and |$| is larger. The parameter |$| can be thought
of as the distance between ωo and ω`. Thus, closer entrainment
to a natural mode is expected if ωo is chosen away from the
desired natural frequency ω`. Below, we shall give physical
interpretations to these findings by probing into the control
mechanisms underlying natural entrainment. Some preliminary
discussions for one-DOF systems can be found in [12].

Let us first examine the role of the CPG unit when it
is achieving natural entrainment to the `th mode approxi-
mately. Recall that the transfer function of the CPG unit,
quasi-linearized through the describing function, is given by
ri(s) in (8). It is straightforward to show, using (28), that
ri(ω) ∼= ωd`i holds when the oscillation frequency ω is close
to ω`. Hence, during the natural entrainment, the control input
ui = ri(s)yi

∼= d`iẏi acts as a positive rate feedback to provide
negative damping that cancels the mechanical damping. It
should be noted that the cancellation is specifically tuned
for d`i, the damping of the ith input/output channel during
oscillation with the mode shape ξ`. With the damping for
the `th mode removed, the closed-loop system would have
an oscillatory solution near the natural mode. This situation
corresponds to the fact that the quasi-linear system (9) has a
pair of poles at s = ±ω with ω ∼= ω`.

The marginal stability condition ensures that the poles at
s = ±ω are the only ones on the imaginary axis and the
rest are in the open left half plane. Hence, with almost all
initial conditions, the trajectory of the quasi-linear system
converges to an oscillation x(t) = =[ξ`ce

ωt] where c is an
amplitude scaling factor that depends on the initial condition.
Structural stability of the oscillation resulting for the original
nonlinear system (convergence to a fixed orbit regardless of
the initial condition) is also expected from the MHB analysis,
and has been confirmed by numerical simulations for some
example systems (one reported in the previous section; see
[30] for others). The mechanism of stabilization can be seen
in the quasi-linear ri(s) which depends on the amplitude
ai of the qi-oscillation. For a fixed ai, the transfer function
ri(s) is a band-pass filter with the center frequency ωo and
the peak gain |ri(ωo)| = 2gihiκi/(1 − µκi). When the
amplitude ai is positively perturbed, κi decreases and the
gain of ri(s) reduces. This results in reduced effects of
negative damping, leading to reduction in ai. By an analogous
argument, a negative perturbation of ai results in tendency
to increase ai. Thus, stability of oscillation can be explained
through amplitude-dependent negative damping supplied by
the nonlinear feedback control.

A quasi-linear analysis of ri(s) further reveals control prin-
ciples behind (32) and the requirement of a large separation
between ωo and ω` for closer entrainment. When η > 0, the
phase plot of ri(ω) monotonically decreases from +90o to
−90o as ω increases, passing through 0o at ω = ωo. Hence,
if ωo À ω`, then ri(s) has a phase close to +90o near ω`,
acting like an approximate differentiator as discussed above.
We see that this approximation is more accurate if ωo is
much larger than ω`, explaining why ωo À ω` is desired for
closer entrainment. On the other hand, when η < 0, the phase
plot of ri(ω) monotonically increases from −90o to +90o.
Therefore, choosing ωo ¿ ω` would make the phase close to
+90o near ω` as desired. In this case, however, the gain plot
of ri(s) near ω` has a negative slope, and hence ri(s) acts like
an integrator with a negative gain, rather than a differentiator
with a positive gain.

Thus, the simplest control mechanisms that could capture
the essence of the CPG dynamics would be the positive rate
feedback ui = ψ(ẏi) and negative integral feedback ui =
−ψ(

∫
yidt), where amplitude-dependent gains are realized by

a sigmoid function ψ. While these control laws may well ex-
plain the entrainment mechanisms for one-DOF systems [12],
they do not seem sufficient for multi-DOF systems due to the
lack of ability to distinguish different modes. The quasi-linear
analysis of the CPG unit suggests that the simplest control
law for multi-DOF systems would be ui = ηψ(β(s)yi), where
β(s) is a transfer function for a band-pass filter with center
frequency ωo, and η is a positive or negative feedback gain.
For the CPG control, the mode partition diagram has shown
that ωo must be chosen appropriately to achieve entrainment
to a specific mode; a rough rule of thumb from Fig. 3 would
be to choose ωo in the interval ω`−1 < ωo < ω`, with negative
feedback (η < 0), when (ω`, ξ`) is the targeted oscillation.
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B. Limitations and Extensions

In the literature, methods for pattern analysis and synthesis
of CPGs (or general nonlinear oscillators) have been devel-
oped. Classical techniques include the perturbation theory and
averaging [31], [32], Poincaré-Bendixson theorem [14], Hopf
bifurcation theorem [33], and the Malkin theorem for phase
coupled oscillators [34]–[36]. More recent methods include
integral quadratic constraints [37] and contraction analysis
[38], [39]. These results are effective for analysis of dynamical
systems, but do not seem directly useful for synthesis of
(artificial) CPGs to control mechanical systems.

Given the extreme difficulty in rigorous analysis or design
of limit cycles at a practically useful level, it appears reason-
able to take an approximate approach as a viable direction.
Our results are based on the MHB method that approxi-
mates periodic signals by sinusoids and static nonlinearities
by describing functions. Therefore, there is no theoretical
guarantee for convergence to the prescribed mode of natural
oscillation, or even for existence of a limit cycle near the
natural mode or elsewhere. Nevertheless, the MHB method
has allowed us to gain insights into fundamental control
mechanisms underlying natural entrainment as discussed in the
previous section. Moreover, the approximate conditions have
been shown useful through a number of numerical examples
[30], [40] for practical design of feedback control systems to
achieve oscillations.

While our design conditions do not guarantee existence
of a periodic orbit, we can formally prove existence of an
oscillation in the sense of Yakubovich, which is known as the
Y-oscillation [25]. An autonomous system with state variables
x(t) ∈ Rn is said to be Y-oscillatory [41] if every trajectory
is bounded and at least one of the variables xi(t) satisfies

lim
t→∞

xi(t) < lim
t→∞

xi(t)

for almost all initial state x(0). In general, this condition
does not imply existence of a limit cycle, and a Y-oscillation
could be a chaotic behavior. Nevertheless, this definition of
oscillation appears to serve well for practical purposes [21],
[42], [43]. It turns out that the closed-loop system (4) with a
CPG controller in Theorem 1 is Y-oscillatory.

Theorem 3: Let the mechanical system (1), ` ∈ In, and
(ωo, η) ∈ F` be given, where Assumption 1 holds. Define the
CPG controller (2) through Procedure 1. Suppose the origin of
the closed-loop system (4) is a hyperbolic equilibrium. Then,
the system is Y-oscillatory.

A proof of this result is given in the appendix, but the
basic idea is the following. Using the fact that ψ is bounded,
and b(s) and (1) are stable, it can be shown that every
trajectory is bounded. Due to ψ(0) = 0 and b(0) = 0, the
origin is the unique equilibrium of (4). Hence, if the origin is
hyperbolic and unstable, then for almost all initial conditions,
the trajectory cannot converge to a fixed point, nor diverge to
infinity, resulting in Y-oscillation.

A further generalization may be possible using a classical
result (Theorem 5.2.15 in [44]) that guarantees existence of
a periodic solution by a harmonic balance equation with
additional conditions. This result also provides a bound on

the error between the predicted sinusoidal oscillation and
the periodic trajectory. However, such developments appear
to be nontrivial and may suffer from technical difficulties
in obtaining the additional conditions in a less conservative,
analytically insightful or numerically tractable manner.

Another direction for extending our results is toward a
general theory of feedback control by CPGs. This paper has
focused on control by a set of simple CPG units (reciprocal
inhibition oscillators) that are not directly coupled to each
other. We have shown that the CPG has a potential to provide
a viable nonlinear control architecture for achieving coordi-
nated oscillations that conform to mechanical constraints (i.e.,
natural motions). It would be interesting to examine how
communications among multiple CPG units can contribute
to broadening the class of achievable oscillation profiles to
include, for instance, traveling waves observed during animal
locomotion [45]. Such oscillation profiles can be characterized
in terms of complex phasors x̂ within the MHB framework
[21], as a generalization of the real mode shape ξ` considered
here. Systematic design of the interconnection structure for
CPGs to achieve arbitrary oscillation profiles for mechanical
systems would be a challenging open problem left for further
research.

VII. CONCLUSION

We have developed a method for the design of feedback
control systems with a decentralized CPG structure (2) to
achieve entrainment to a prescribed mode of natural oscillation
for n-DOF linear mechanical systems (1). The method is
based on an MHB equation and hence there is no theoretical
guarantee for our results (except for Theorem 3). Nevertheless,
our numerical experience [30] seems to indicate their practical
usefulness. An illustrative example was presented herein.
Moreover, analytical insights are obtained for the control
mechanisms underlying natural entrainment, as discussed in
the previous section.

For the control design, the intrinsic CPG frequency ωo

and the feedback gain η have been identified as the essential
parameters. The main results (Theorems 1 and 2) have shown,
within the MHB framework, that the parameter plane (ωo, η)
can be partitioned into 2n regions O`` and Oo` with ` ∈ In

as in (22), in which entrainment to oscillations (ω`, ξ`) and
(ωo, ξ`), respectively, are approximately achieved. This leads
to mode partition diagrams (e.g., Fig. 3) that facilitate the
control design. A bound on the entrainment error in the
oscillation frequency has also been obtained, suggesting that
the error would be small if ωo is chosen away from the targeted
natural frequency ω`.

APPENDIX A
PRELIMINARY LEMMAS

Lemma 4 (Marginal stability of the quasi-linear system):
Let the mechanical system (1), CPG controller (2), ω, a ∈ R+,
and ` ∈ In be given, where ψ ∈ Ψ and Assumption 1 holds.
Consider the quasi-linear system in (9). Suppose there exist
a ∈ R+ and η ∈ R such that gihi = µkiη holds for all i ∈ In,
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i ∈ Im, and

κ(a) = (1 − f`(ω))/µ, η = g`(ω) (33)

are satisfied. Then, (9) has characteristic roots at s = ±ω.
Moreover, the remaining roots are all in the open left half
plane if and only if

− min(εn+1, εi) < f`(ω), (34)
gi(w+

i ) < g`(ω) < gi(w−
i ), (35)

hold for all i ∈ In\{`}, where w = w±
i are the unique positive

solutions of fi(w) = f`(ω) with w−
i < w+

i , and εi for i ∈ In+1

are defined by

εi :=
1

2ρωi

(√
ωo

ωi
−

√
ωi

ωo

)2

, ωn+1 :=
ωo

1 + ρω1
.

Proof: Exploiting the collocated structure of the system
(1), A(s) in (9) can be written as

A(s) = Js2 + Ke(s), e(s) := 1 + ρs +
2η

µ − 1/(b(s)κo)
,

where κo := κ(a). By definition of the natural frequencies,
the characteristic equation is given by

detA(s) = 0 ⇔ s2 + ω2
i e(s) = 0

⇔ s4 + c3s
3 + c2s

2 + c1s + c0 = 0 (36)

for all i ∈ In, where

c3 := 2ωo(1 − µκo) + ρω2
i ,

c2 := ω2
o + ω2

i + 2ρωoω
2
i (1 − µκo),

c1 := 2ωoω
2
i (1 − µκo − 2µηκo) + ρω2

oω2
i , c0 := ω2

oω2
i .

Substituting the expressions for κo and η given by (33), these
coefficients can be written as

c3 = 2ωo(f`(ω) + βi), c2 = 2ρωoω
2
i (f`(ω) + ϑi),

c1 =
2ωoω

2
i ω2

ω2
`

(f`(ω) + β`),
(37)

where f`(ω) is defined by (14), and for i ∈ In,

βi :=
2

ρωo
ζ2
i , ζi :=

ρωi

2
, ϑi :=

1
2ρωi

(
ωo

ωi
+

ωi

ωo

)
. (38)

Let us first consider the characteristic roots of (36) for the
case i = `. It can readily be verified that (36) reduces to

(s2 + ω2)
(

s2 + 2ωo(f`(ω) + β`)s +
ω2

oω2
`

ω2

)
= 0.

Thus, there exist characteristic roots at s = ±ω, and the
other two are in the open left half plane if and only if f`(ω) >
−β`. Next, consider the case i 6= `. By the Routh’s stability
criterion, all the roots of (36) are in the open left half plane
if and only if

ci > 0, c3c2 > c1, c3c2c1 > c2
1 + c2

3c0,

for all i ∈ I4. The second condition is redundant because it is
implied by the first and third, which are satisfied if and only
if

−min(β`, βi, ϑi) < f`(ω), λ2 − 2cλ + (ωo/ωi)
2

< 0, (39)

where

c := ρωo(f`(ω) + ϑi), λ :=
(

ω

ω`

)2
f`(ω) + β`

f`(ω) + βi
.

Let χ± := c ±
√

c2 − (ωo/ωi)2, and we obtain

λ2 − 2cλ + (ωo/ωi)
2

< 0
⇔ χ− < λ < χ+, c2 − (ωo/ωi)2 > 0
⇔ gi(w+

i ) < g`(ω) < gi(w−
i ), f`(ω) + εi > 0,

noting that

gi(ω) =
1

2(fi(ω) − 1)

{(
fi(ω) + ζi

ωi

ωo

)(
ω

ωi

)2

−
(
fi(ω) +

ρ

2
ωo

)}
,

χ± =
(

w±
i

ωi

)2

, f`(ω) = fi(w±
i ).

Since εi = ϑi − (1/ρωi) < ϑi, condition (39) is equivalent
to (35) and −min(β`, βi, εi) < f`(ω). This is the stability
condition for (36) when i 6= `. Finally, combining the above
two cases i = ` and i 6= `, we conclude the result where we
note that min(βi) = εn+1.

Lemma 5 (Instability of the origin): Let the mechanical
system (1) and CPG controller (2) be given, where ψ ∈ Ψ and
Assumption 1 holds. Suppose there exists a nonzero η ∈ R
such that gihi = µkiη holds for all i ∈ Im. Then the origin
of the closed-loop system (4) is unstable if there exists i ∈ In

such that at least one of the following conditions is violated:

γi ≤ βi, γi ≤ δi, gi(w+
i ) ≤ η ≤ gi(w−

i ), (40)

where (fi, gi), ζi, and βi are defined by (14) and (38),

γi := µ − 1, δi :=
(ωo − ωi)2

4ωoωiζi
, (41)

and ω = w±
i are the positive roots of fi(ω) = −γi with w−

i ≤
w+

i , whose existence is guaranteed by γi ≤ δi.
Proof: Since ψ′(0) = 1, the linearized system of (4)

around the origin is given by G(s, I)z = 0, or equivalently,
by A(s)x = 0 in (9) with κi = 1 for all i ∈ Im. Following
the proof of Lemma 4, the linearized system is stable if and
only if the characteristic roots of (36) are in the open left
half plane. Since the characteristic equation (36) has exactly
the same form as the one considered for the single DOF case
in Lemma A.3 of [12], the result can be proved by slightly
modifying the proof of this previous result.

APPENDIX B
PROOFS OF LEMMAS AND THEOREMS

Proof of Lemma 1: With x̂ = ξ`, condition A(ω)x̂ = 0 in
(10) can be written as

BR(ω)Cξ` = (K − ω2J + ωD)ξ`,

⇔ BR(ω)ŷ = σ`(ω)Kξ` = σ`(ω)BKŷ,

⇔ ri(ω) = kiσ`(ω), for all i ∈ In, (42)
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where we used Assumption 1 and noted the definitions ŷ =
Cξ` and Jξ` = Kξ`/ω2

` , and

σ`(ω) := 2(ω/ω`)(ζ` − $`).

From (8), we have ri(ω) = 2giκipi(ω/ωo) with

pi(ω/ωo) =
hi

1 − µκi + $o
. (43)

Direct substitution of this expression into (42) yields

gihiκi = (ω/ω`)(ζ` − $`)(1 − µκi + $o)ki.

The imaginary and real parts of this equation give the first
and second equations in (12). Finally, substituting (43) into
α̂i = pi(ω/ωo)ŷi in (10), and using the relation 1 − µκi =
$o$`/ζ`, we have the third equation in (12).
Proof of Lemma 2: Since (ωo, η) ∈ F`, the solution ω > 0 to
η = g`(ω) exists, is unique, and satisfies 0 < f`(ω) < 1 [12].
Thus, (34) in Lemma 4 is satisfied. It then suffices to show
the equivalence:

gi(w+
i ) < g`(ω) < gi(w−

i ) ⇔ τ`(ωo, η) > τi(ωo, η), (44)

for i ∈ In\{`}, where w = w±
i are defined in Lemma 4, and

τi for i ∈ In are defined in Lemma 2.
Fix i ∈ In\{`} and let w = w±

ζ be the positive solutions
of fi(w) = 1 with w−

ζ < w+
ζ . Define wm := min(ωo, ωi) and

wM := max(ωo, ωi), and introduce the two open intervals on
the real axis

L := (w−
ζ , wm), R := (wM ,w+

ζ ).

Note that fi(w±
i ) > 0 is guaranteed by f`(ω) > 0, and w−

i ∈ L
and w+

i ∈ R [12] hold true since fi(ω) is strictly convex and
vanishes at ω = ωo and ω = ω` [12].

First, consider the case g`(ω) < 0. Let w = w+
i be the

solution of gi(w) = η. Due to the strictly decreasing property
of gi in R and the strictly increasing property of fi in R [12],
we obtain

gi(w+
i ) < g`(ω) = η ⇔ w+

i > w+
i

⇔ fi(w+
i ) > fi(w+

i ) ⇔ τ`(ωo, η) > τi(ωo, η).

Next, consider the case g`(ω) > 0. Similarly, let w = w−
i be

the solution of gi(w) = η, and then we obtain

η = g`(ω) < gi(w−
i ) ⇔ w−

i < w−
i

⇔ fi(w−
i ) > fi(w−

i ) ⇔ τ`(ωo, η) > τi(ωo, η),

where we noted that both fi and gi are strictly decreasing on
L. Thus, (44) has been proved.

Proof of Theorem 1: The developments from Lemma 1, lead-
ing to Theorem 1, have shown that Procedure 1 uniquely
determines the controller (µ, ωo, g, h) from (ωo, η) ∈ F`,
as well as a solution (ω, ξ`, α̂) to the MHB equation (10).
Moreover, the definition of S` and Lemma 4 guarantee that it
is a stable solution. Finally, the bounds in (23) and (24) follow
from 0 < f`(ω) < 1, which can be shown by a method similar
to the proof of Theorem 2 in [12].

Proof of Lemma 3: Condition A(ω)ξ` = 0 in (10) can be
written as

Bû = M(ω)ξ`,

û := R(ω)ŷ, M(ω) := K − ω2J + ωD.
(45)

If B has full column rank, this condition holds if and only if

(I − BB†)M(ω)ξ` = 0, û = B†M(ω)ξ`. (46)

If B does not have full column rank, (46) is only sufficient
for (45), with the first condition in (46) remaining necessary.
Using Jξ` = Kξ`/ω2

` , the real and imaginary parts of the first
condition in (46) can be shown to be equivalent to (26) and
(27), respectively. Using the definitions of k`i and d`i in (25),
it can be verified that the second condition in (46) reduces
equivalently to

ûi = k`iσ`i(ω)ŷi, σ`i(ω) := 2(ω/ω`)(ζ`i − $`).

On the other hand, the definition of û in (45) gives ûi =
ri(ω)ŷi, and we thus arrive at ri(ω) = k`iσ`i(ω). The rest
of the proof is similar to that of Lemma 1.

Proof of Theorem 2: Since the controller (µ, ωo, g, h) is de-
signed by Procedure 2, (ω, ξ`, α̂) is a solution of the MHB
equation (10), and is uniquely determined. Furthermore, since
(ωo, η) ∈ S`, the solution is a stable solution. The closeness
of ω to either ω` or ωo can also be shown as in the proof of
Theorem 2 in [12].

Proof of Theorem 3: The closed-loop system (4) can be
viewed as a feedback connection of a linear system q = T (s)v
and the nonlinearity v = ψI(q), where

T (s) := b(s)(M−HP (s)G), P (s) := C(Js2+Ds+K)−1B.

The system T (s) is stable because the neuronal dynamics b(s)
and mechanical system P (s) are both stable. The input v to
T (s) is bounded because ψ ∈ Ψ, and hence all the trajectories
of the closed-loop system are bounded. By Theorem 1 in [41],
boundedness of trajectories and hyperbolic instability of every
equilibrium imply that the system is Y-oscillatory. On the other
hand, the origin of (4) is the unique equilibrium due to ψ(0) =
0 and b(0) = 0, and is hyperbolic by supposition. Hence,
it suffices to show instability of the origin. Below, we will
show, using Lemma 5, that the origin is unstable whenever
(ωo, η) ∈ F`.

Let us prove the statement by contraposition. Suppose the
origin is not unstable. Then, by Lemma 5, condition (40) holds
for all i ∈ In. Consider the case where ωo < ω`. According to
Lemma A.4 in [12], we have ζ`$ = g`(ω`) < g`(w+

` ) because
f`(w+

` ) = −γ` ≥ −β`. Since w−
` < ωo, we have g`(w−

` ) < 0.
Therefore, we obtain

ζ`$o < g`(w+
` ) ≤ η ≤ g`(w−

` ) < 0,

which violates (ωo, η) ∈ F`. In the case of ωo > ω`, by a
similar argument, we obtain

0 < g`(w+
` ) ≤ η ≤ g`(w−

` ) < ζ`$o.

Thus we have (ωo, η) 6∈ F` again. We have now proved that
(ωo, η) does not belong to F` if the origin is not unstable.
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