
Synthesis of Controllers for Exact Entrainment to
Natural Oscillation∗

Lijun Zhu and Zhiyong Chen
School of Electrical Engineering and Computer Science

The University of Newcastle
Callaghan, NSW 2308, Australia

c3104718@uon.edu.au, zhiyong.chen@newcastle.edu.au

Tetsuya Iwasaki
Department of Mechanical and Aerospace Engineering

University of California
Los Angeles, CA 90095, USA

tiwasaki@ucla.edu

Abstract— For a biologically inspired mechanical system con-
sisting of multiple segments, its natural oscillation is defined as
a periodic body movement pattern conforming to the dynamics
inherent to the body-environment interaction, leading to an
effective locomotion of the system. In the literature, a central
pattern generator based controller has been designed to approx-
imately achieve entrainment to a natural oscillation. This paper
further refines the previous result by proposing a controller
that achieves exact entrainment, as well as a rigorous stability
analysis which leads to a complete solution to the problem of
entrainment to natural oscillation.

Index Terms— Oscillator, limit cycle, central pattern genera-
tor (CPG), locomotion

I. INTRODUCTION

It is believed that fundamental locomotion control prin-
ciples designed by nature are hidden in various animal
behaviors including swimming, crawling, flying, walking, etc.
The principles are of particular interest to control engineers
as they enable designs of highly intelligent and efficient me-
chanical machines with robustness, adaptivity, and autonomy.
Biologists discovered that the energy consumption during
locomotion is minimized by exploiting the body movement
pattern [1], [2]. The results reported in this paper are part of a
larger effort to find an engineering analogue of this discovery,
investigating an appropriate movement pattern, called natural
oscillation, as well as the corresponding control principles.

To facilitate the research, we focus on a class of multi-
link systems mimicking animal locomotion behaviors such
as snake crawling or eel swimming. The system is a chain
of multiple links connected through rotational joints, placed
on a horizontal plane. This is a typical rectifier system [3]
which, under certain coordinated oscillations of the inputs
(rhythmic body movements), produces biased outputs (for-
ward velocities). Essentially, the locomotion of this system
consists of two components, the undulatory body movement
and the effect of rectification. The body movement in an
optimal pattern in a certain sense is expected to be rectified
to generate an effective translation of the whole body. We
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conjecture that an optimally efficient pattern can be char-
acterized as a natural oscillation of the body-environment
system. In particular, a natural mode of oscillation is defined
in [4] to be a free response of the modified system obtained
by properly reducing the damping effects to achieve marginal
stability for sustained oscillations.

Once a natural oscillation is properly defined, the following
task is to find the control principle for actuating the system
body to realize the natural oscillation in a stable manner
via feedback. Biological control mechanisms for animal
locomotion are known to consist of neuronal circuits, called
the central pattern generator (CPG) [5]–[7]. A CPG can
be modeled as a nonlinear oscillator, and when placed in
a feedback loop, provides a basic control architecture to
achieve coordinated oscillations of engineered systems [8]–
[10]. Within the CPG framework, feedback control laws
to achieve entrainment to a resonance have been studied
for one degree-of-freedom (DOF) systems [11]–[16] as well
as for multi-DOF standard mechanical systems (which are
described by symmetric positive definite mass, stiffness, and
damping matrices) [17], [18].

Recently, we showed [4] how a CPG based controller can
be designed to achieve the natural oscillation for non-standard
mechanical systems with asymmetric stiffness matrix, aris-
ing from dynamics of animal locomotion. Technically, the
development in [4] is within the framework of multivariable
harmonic balance (MHB) [19], [20]. The MHB approach is
used to characterize the design specification approximately,
and systematic methods are proposed to find the controller
parameters that satisfy the MHB condition exactly. Though
MHB equations characterize the design specification effec-
tively and simply, yet it is at the expense of losing accuracy.
Moreover, the asymptotic stability of the closed-loop system
is not theoretically guaranteed but demonstrated only by
numerical simulation. To overcome the two disadvantages in
the MHB based controller, this paper will further investigate
an exact controller with a rigorous stability analysis.

The remaining sections are organized as follows. The
definition of natural oscillation will be revisited in Section
II followed by the precise formulation for the problem of



exact entrainment to natural oscillation. The main result and
its proof are given in Section III. A numerical example is
given in Section IV to illustrate the effectiveness of the
exact controller. Finally, the paper is closed in Section V.
Throughout this paper, <(x) and =(x) represent the real and
imaginary parts of x, respectively.

II. PROBLEM FORMULATION

The locomotion of a class of mechanical systems, e.g.,
snake-like multi-link systems, is achieved by the coordinated
oscillations of the body segments. The mechanical dynamics
act as a rectifier that converts the undulatory body movement
into a forward velocity. We are interested in a special oscil-
lation pattern, called natural oscillation, which may naturally
lead to an appropriate forward locomotion. More specifically,
the oscillation dynamics can be characterized by a linearized
model as follows (see [4])

Jθ̈ + µJθ̇ + Kθ = u, K = Ko + vΛ (1)

where θ ∈ Rn represents the shape variables for the body,
e.g., the link angles. The matrices J,K ∈ Rn×n are the
inertia and stiffness matrices respectively, µ ∈ R is the
environmental force constant and u ∈ Rn is the controller
input vector representing the joint torques. Note that the
stiffness matrix K is not necessarily symmetric, where Ko

is a symmetric positive definite matrix representing the body
stiffness, and vΛ is an asymmetric matrix representing the
skewed stiffness arising from locomotion at a velocity v ∈ R
relative to the environment. In (1), we impose the following:

Assumption 1:
(a) J,K ∈ Rn×n and J = J T > 0.
(b) All the eigenvalues of M := J−1K are simple and have

positive real parts.

In [4], the natural oscillation is defined as a free response
of the modified system obtained by reducing the damping
effect to achieve marginal stability for sustained oscillations.
The definition is given below.

Definition 2.1: (Natural Oscillation) Consider the system
described by (1) with Assumption 1. Let the damping effect
be adjusted by a parameter ε ∈ R and define the modified
system with no input:

Jθ̈ + (µ − ε)Jθ̇ + Kθ = 0. (2)

Suppose that there exists a value of ε such that the system is
marginally stable with a single pair of complex eigenvalues
on the imaginary axis. Let such value of ε be denoted
by %, and the eigenvalues and eigenvector be ±jω and z,
respectively. Then, the resulting periodic trajectory θ(t) =
<[zejωt] of (2) is called the natural oscillation (ω, z) of the
original system (1), where %, ω and z are referred to as the
damping factor, natural frequency, and mode shape of the
natural oscillation, respectively.

The natural oscillation can be explicitly calculated from
the spectral decomposition. Let M be the set of eigenvalue,
eigenvector, and left eigenvector of M :

M := {(α, ζ, l) ∈ C × Cn × Cn :
(αI − M)ζ = 0, l∗(αI − M) = 0, l∗ζ = 1 },

where the superscript ∗ is the conjugate transpose operator.
The following lemma [4] characterizes the natural oscillation.

Lemma 2.1: Consider the system in (1) with Assump-
tion 1. Let

% := min
(α,ζ,l)∈M

µ +
=(α)√
<(α)

(3)

and suppose the minimizer is unique and is denoted by
(ς, z, `). Then, the natural oscillation of (1) is given by (ω, z)
with damping factor % where ω :=

√
<(ς).

To realize the natural oscillation (w, z) for the mechanical
system (1), the simplest approach is to exactly cancel the
damping factor by implementing a controller u = %Jθ̇ with a
properly selected initial condition. Obviously, this approach is
not practical because it is critically sensitive to the parameter
% and the initial condition. In fact, it is the main objective of
this paper to propose a practically implementable controller
to achieve the exact entrainment to a natural oscillation with
structural stability.

Definition 2.2: (Exact Entrainment) For the system (1),
consider a feedback controller of the form u = g(θ, θ̇). Let
the orbit of the natural oscillation (ω, z) be defined by

O := { (ϑ(t), ϑ̇(t)) ∈ Rn × Rn | t ∈ R },
ϑ(t) := Z sin(ωt + φ), Zejφ := z,

where Z is the diagonal matrix with entries |zi| and φ is a
vector with entries ∠zi. A controller is said to achieve exact
entrainment to the natural oscillation (ω, z) if the following
property holds: When the initial condition (θ(0), θ̇(0)) is
sufficiently close to the orbit O, i.e., when

min
(ϑo,ϑ̇o)∈O

‖θ(0) − ϑo‖ + ‖θ̇(0) − ϑ̇o‖

is sufficiently small, the trajectory of the closed-loop system
θ(t) converges to the orbit O, i.e., there exists to, dependent
upon the initial condition, such that

lim
t→∞

θ(t) − ϑ(t + to) = 0.

Inspired by CPG control mechanisms in animal locomo-
tion, some nonlinear controllers have been constructed in
[4] for the problem of entrainment to natural oscillation. A
typical positive rate feedback controller is given in the form:

u = εJθ̇ + rJZψ(q), q = ηZ−1θ̇ (4)

where ψ is some nonlinear function. However, the insuf-
ficiency of the controller given in [4] is two fold. First,



the trajectory θ(t) of the closed-loop system converges to
the desired ϑ(t) only in the approximate sense where the
higher order harmonic terms of θ(t) are ignored. In partic-
ular, in the harmonic balance analysis, the nonlinear term
is approximated as ψ(x) ≈ κ(a)x for x(t) = a sin(ωt),
where κ is the describing function of ψ. Secondly, numerical
simulation shows that the asymptotic trajectory of the closed-
loop is a stable limit cycle, but it lacks a rigorous stability
analysis. It has been proven that once ψ(q) is quasi-linearized
at the desired trajectory ϑ(t), the resulting linear system is
marginally stale, which hence induces an natural oscillation
ϑ(t). However, it is important to know whether ϑ(t) is a
stable limit cycle of the original nonlinear system. Once θ(t)
is deviated from ϑ(t), it should be asymptotically attracted
to ϑ(t), but this property has yet to be well addressed.

III. MAIN RESULTS

We will propose a controller in the form of (4) by appro-
priately choosing the nonlinear function such that the exact
entrainment of θ(t) to ϑ(t) can be achieved with a rigorous
proof for stability. The main result of this paper is now stated.

Theorem 3.1: Consider the system (1) with Assump-
tion 1. Let (ω, z) be the natural oscillation with damping
factor % as described in Lemma 2.1. Let η, ε ∈ R be such that
η > 0, ε < %, and let κ(x) be a function that is continuously
differentiable, strictly decreasing, and positive on x > 0.
Then, the controller (4) with

r = (% − ε)/(κ(ηω)η), ψ(q) = κ(‖R†Zq‖)q

achieves the exact entrainment to the natural oscillation
(ω, z), where Z is the diagonal matrix with entries |zi|, and

R =
[
=(z) <(z)

]
, R† = 2

[
=(`) <(`)

]T
.

Proof: For convenience of proof, we first define some
notation. It is easy to show that[

z z∗
]
Γ−1 = R, Γ

[
`∗

`T

]
= R†, Γ :=

[
j −j
1 1

]
and hence

R†R = Γ
[

`∗

`T

] [
z z∗

]
Γ−1 = I.

That is, R† is a pseudo-inverse of R. Let matrices N ∈
Rn×(n−2) and N † ∈ R(n−2)×n be such that

N†N = I, R†N = 0, N†R = 0.

Such matrices exist due to the assumption that the eigenvalues
of M are simple. In particular, the columns of N (row of N†)
can be the real and imaginary parts of the (n−2) right (left)
eigenvectors of M corresponding to the eigenvalues other
than ς or ς∗. Some simple calculation gives

R†MR =
[

a −b
b a

]
, a = <(ς), b = =(ς),

R†MN = 0, N †MR = 0.

Finally, we define a nonsingular matrix T as follows:

T : =
[

R†

N†

]
, T−1 =

[
R N

]
.

The closed-loop system under consideration is

θ̈ + (µ − ε − rηκ(‖R†ηθ̇‖))θ̇ + Mθ = 0. (5)

Under the new coordinate

℘ :=
[

℘1

℘2

]
:= Tθ, ℘1 ∈ R2, ℘2 ∈ Rn−2,

the closed-loop system (5) becomes

℘̈1 + (µ − ε − rηκ(‖η℘̇1‖))℘̇1 + R†MR℘1 = 0 (6)
℘̈2 + (µ − ε − rηκ(‖η℘̇1‖))℘̇2 + N†MN℘2 = 0. (7)

In what follows, we will investigate these two subsystems (6)
and (7), respectively.

For the upper subsystem (6), we write ℘1 in the polar
coordinate:

℘1 = ξ

[
cos $
sin$

]
with the radius ξ ∈ R and the angle $ ∈ R. For convenience,
we define two vectors

v1 =
[

cos $
sin$

]
, v2 =

[
− sin$
cos $

]
.

Then we have

℘̇1 = ξ̇v1 + ξv2$̇

and hence, together with (6),

℘̈1 = ξ̈v1 + ξ̇v2$̇ + ξ̇v2$̇ − ξv1$̇
2 + ξv2$̈

= −(µ − ε − rηκ(‖η℘̇1‖))(ξ̇v1 + ξv2$̇)
−R†MRξv1.

Multiplying vT
1 and vT

2 from left on the above equation gives
the following two equations, (noting vT

1v2 = vT
2v1 = 0 and

vT
1v1 = vT

2v2 = 1)

ξ̈ − (b/ω)ξ̇ − rηδξ̇ + ξ(ω2 − $̇2) = 0
$̈ + 2(ξ̇/ξ)$̇ − (b/ω)($̇ − ω) − rηδ$̇ = 0. (8)

where δ := κ(‖η℘̇1‖) − κ(ηω) and the following facts are
used:

vT
1R

†MRv1 = a = ω2, vT
2R

†MRv1 = b,

µ − ε − rηκ(ηω) = −b/ω.

We consider the system (8) as a three dimensional system
with states (ξ, ξ̇, $̇). Obviously, the system has an equilib-
rium point (ξ, ξ̇, $̇) = (1, 0, ω). Next, we will show this
equilibrium point is asymptotically stable. To this end, we
define (ξ̄, ˙̄ξ, ˙̄$) = (ξ−1, ξ̇, $̇−ω) and the linearized system



at (ξ̄, ˙̄ξ, ˙̄$) = (0, 0, 0) is

¨̄ξ − g1
˙̄ξ − 2 ˙̄$ω = 0

¨̄$ + 2ω ˙̄ξ − g1 ˙̄$ − g2(ω2ξ̄ + ω ˙̄$) = 0 (9)

where g1 = b/ω < 0, g2 := rη2κ′(ηω) < 0 and

δ = κ(‖η℘̇1‖) − κ(ηω) ≈ (η/ω)κ′(ηω)℘̇T
1(℘̇1 − v2ω)

= (η/ω)κ′(ηω)(ξ̇v1 + ξv2$̇)T(ξ̇v1 + ξv2$̇ − v2ω)
≈ ηκ′(ηω)(ξ̄ω + ˙̄$).

The characteristic equation for (9) is

a3s
3 + a2s

2 + a1s + a0 = 0

with a3 = 1, a2 = −(2g1 + g2ω) > 0, a1 = g2
1 + g1g2ω +

4ω2, and a0 = −2g2ω
3 > 0. We can use the Routh table

to verify that all the roots are in the open left half plane,
and thus conclude stability of (9). In other words, we have
limt→∞ ξ(t) = 1 and limt→∞ ˙̄$(t) = 0 exponentially. The
latter implies

lim
t→∞

∫ t

0

˙̄$(τ)dτ

exists, or equivalently, there exists a constant

$o := lim
t→∞

(
$(t) − ωt

)
.

As a result, we have

lim
t→∞

℘1(t) −
[

cos(ωt + $o)
sin(ωt + $o)

]
= 0.

With ξ = 1 and $(t) = ωt+$o, the lower subsystem (7)
becomes

℘̈2 − (b/ω)℘̇2 + N†MN℘2 = 0

which has the following characteristic equation

det(λ2I − (b/ω)λI + N†MN) = 0. (10)

Let A be the set of eigenvalues of M other than ς and
ς∗. Because N is spanned by the n − 2 eigenvectors of
M associated with A, for each eigenvalue α ∈ A, there
exists a vector w such that M(Nw) = α(Nw), and hence,
N†MNw = αN†Nw = αw. Thus, A coincides with the set
of eigenvalues of N†MN . Accordingly, λ is a characteristic
root of equation (10) if and only if it satisfies

λ2 − (b/ω)λ + α = 0

for some α ∈ A. From Lemma 5.1 in the appendix, the
polynomial is Hurwitz since ς is given by (3) and b/ω =
=(ς)/

√
<(ς). As a result, we have lim

t→∞
℘2(t) = 0.

Let

ϑ(t) = R

[
cos(ωt)
sin(ωt)

]
= Z sin(ωt + φ), to = $o/ω.

It now follows that

lim
t→∞

θ(t) − ϑ(t + to) = lim
t→∞

T−1℘(t) − ϑ(t + to)

= lim
t→∞

R℘1(t) + N℘2(t) − R

[
cos(ωt + $o)
sin(ωt + $o)

]
= 0.

The proof is thus complete.

IV. NUMERICAL EXAMPLE

The model (1) captures the locomotion behavior for a
multi-link system interacting with environment. A typical ex-
ample, called a fliptail system, is given in [4], [21]. When the
tail of the system flaps in a certain pattern, the friction force
between body and environment drives it forward. Contrarily,
if the system is pulled forward with a constant velocity v, its
segmental body is expected to oscillate in a natural pattern.
The dynamic model of this scenario is in the form of (1) with
the matrices J and K given by

J = mol
2
o(FF T + I/3), µ = µn/mo, K = vΛ + koBBT,

Λ = (µn − µt)loF + µtlodiag(Fe),

where

F =


1 −1

. . . . . .
1 −1

1

 , B =


1 2 · · · 2

1
. . .

...
. . . 2

1


and e ∈ Rn is the vector with all its entries being one. In
the simulations, we use the following parameter values: The
number of links for the tail is n = 5, and each link has mass
mo := m/n and length 2lo = l/n, where the total length is
l = 0.5 m and mass is m = 0.2 kg. The environmental force
constants are µt = 0 and µn = 0.2 Ns/m, and each joint has
stiffness ko = 1.25 × 10−3 Nm/rad. The nonlinear function
κ in Theorem 3.1 is chosen as κ(x) = 1/(1 + x).

First, the natural oscillation has been found as in Table I.1

Two pairs of controller parameters, (η, ε) = (2, 2.3) and
(η, ε) = (3, 0) are used in the simulations. The profile of
the natural oscillation with a positive differential feedback
(PDF) controller [4] is given in Table II. We note that the
natural oscillation can be achieved approximately.

Next, to obtain an exact solution, we apply the controller
developed in Theorem 3.1. For the two pairs of parameters
(η, ε) = (2, 2.3) and (η, ε) = (3, 0), the performance of exact
entrainment to the natural oscillation is shown in Table III.

Finally, the waveforms of the oscillations with the PDF
controller and the exact controller are given in Figures 1 and
2. As expected, it can be seen that the approximate natural
oscillation deviates from sinusoidal waveforms, but the exact
one does not.

1In the tables, without loss of generality, we set φ5 = 0◦ to be the
reference phase, and ai is the amplitude of θi(t).



TABLE I
PROFILE OF THE NATURAL OSCILLATION

Period φ1 φ2 φ3 φ4

1.97 183.6◦ 121.6◦ 76.5◦ 20.2◦

a1 a2 a3 a4 a5

2.4◦ 8.9◦ 16.1◦ 29.2◦ 45.6◦

TABLE II
PROFILE OF THE OSCILLATION WITH A PDF CONTROLLER

η, ε Period φ1 φ2 φ3 φ4

2, 2.3 1.97 183.1◦ 120.9◦ 75.7◦ 19.5◦

3, 0 1.99 186.1◦ 120.3◦ 75.6◦ 17.6◦

η, ε a1 a2 a3 a4 a5

2, 2.3 2.4◦ 8.9◦ 16.1◦ 29.3◦ 45.9◦

3, 0 2.4◦ 9.2◦ 17.2◦ 30.9◦ 50.4◦

TABLE III
PROFILE OF THE OSCILLATION WITH AN EXACT CONTROLLER

η, ε Period φ1 φ2 φ3 φ4

2, 2.3 1.97 183.6◦ 121.6◦ 76.5◦ 20.2◦

3, 0 1.97 183.6◦ 121.6◦ 76.5◦ 20.2◦

η, ε a1 a2 a3 a4 a5

2, 2.3 2.4◦ 8.9◦ 16.1◦ 29.2◦ 45.6◦

3, 0 2.4◦ 8.9◦ 16.1◦ 29.2◦ 45.6◦

95 96 97 98 99 100

−50

0

50

time [s]

de
gr

ee

Fig. 1. Non-sinusoidal trajectories of the closed-loop system with PDF
controller.
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Fig. 2. Sinusoidal trajectories of the closed-loop system with exact
controller.

V. CONCLUSION

In this paper, we have considered the exact entrainment
controller inspired by the CPG control principle, which is
applied to achieve the natural oscillation of the mechanical
systems arising from typical dynamics of animal locomotion.
The natural oscillation is sinusoidal and it is a limit cycle of
the system. We have proven that if the nonlinear function
adopted by the controller has a negative slope, then the limit
cycle is locally asymptotically stable. In other words, the
system trajectories in the neighborhood of the limit cycle
always converge to it and the exact entrainment to natural
oscillation is thus achieved.

APPENDIX

Lemma 5.1: For any ς ∈ C with <(ς) > 0, the polyno-
mial

p(ς, λ) := λ2 + aλ + ς = 0, (11)

is Hurwitz (i.e., the solution λ has negative real part,) if and
only if a > |=(ς)|/

√
<(ς).

Proof: The polynomial p(ς, λ) is Hurwitz if and only if
the polynomial with real coefficients q(λ) := p(ς, λ)p(ς∗, λ)
is Hurwitz. It is straightforward to verify using the Routh
stability criterion that q(λ) is Hurwitz if and only if a >
|=(ς)|/

√
<(ς).
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