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Abstract— This paper introduces a mathematical tool for
analyzing neuronal oscillator circuits based on multivariable
harmonic balance (MHB). The tool is applied to a model of
the central pattern generator (CPG) for leech swimming, which
comprises a chain of weakly coupled segmental oscillators. The
results demonstrate the effectiveness of the MHB method and
provide analytical explanations for some CPG properties.

Index Terms— Neuronal networks, Central pattern generator,
Harmonic balance, Coupled oscillators

I. Introduction
The central pattern generators (CPGs) for rhythmic move-

ments of animals during locomotion have been studied for
decades. Physiological experiments [1] and mathematical
modeling [2] have revealed how neuronal interconnections
are made for CPGs of a variety of animals. In particular,
mathematical modeling enables us to examine which system
parameters determine dynamical properties of locomotion.
One way to exploit a CPG model (differential equations)
is to simulate the oscillatory behavior for various scenarios
via numerical integration. However, simulations can be time
consuming for a large network of neurons, and the underlying
mechanisms for pattern generation are likely to remain hidden
within the computer code. An alternative, complementary
approach is mathematical analyses of the model. Such anal-
yses could uncover direct and explicit relationships between
a property of interest (e.g. phase) and system parameters,
providing more insights into the oscillation mechanisms.
Various theoretical analysis methods for understanding CPGs
have been described in the literature including perturbation
theory and averaging [3], Malkin theorem and phase coupled
oscillator (PCO) model [4], and so on.

Another well-known method for the analysis of oscillators
is the harmonic balance approach (see e.g. [5]) that ap-
proximates the oscillatory signals by sinusoids. Recently, the
authors have developed a new framework called multivariable
harmonic balance (MHB) to analyze CPGs consisting of
multiple identical neuronal modules [6], [7]. The MHB
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method allows for a simple characterization of the oscillation
profile — frequency, amplitude, bias, and phase, and it
provides insights into pattern generation mechanisms. The
main objectives of this paper are to (i) illustrate how the
MHB method can be applied to the analysis of weakly
coupled oscillators and demonstrate its effectiveness, and (ii)
provide analytical explanations for some of the properties of
the leech swimming CPG that were revealed earlier through
physiological experiments [1] and model simulations [8].

II. Problem Formulation
Many neuronal circuits that underlie animal locomotion

comprise a combination series of local oscillators: 1

vk = βe + µMk(s)φ(vk), k = 1, · · · ,m (1)

where vk ∈ Rn is the membrane potentials of n neurons
within the segment, β ∈ R is a tonic stimulus from excitatory
neurons (e.g., cell 204 for the leech swimming CPG [9]), and
µ is the coupling strength of the intrasegmental connection.
The function

φ(x) := max(x, 0). (2)

represents the steady-state relationship between the presy-
naptic and postsynaptic potentials. The matrix Mk(s) :=
f(τks)M is a transfer matrix capturing the dynamics of the
neuronal couplings, where τk is the time constant of the
synaptic connections within the kth segment and it varies
slightly from one segment to another. The nominal value τo

can be chosen equal to either one of the τks or their average
value. Let ∆τo := [maxk(τk) − mink(τk)] /(m − 1) be a
nominal size of the variations in time constants. We assume
that the variation is small, i.e., ε := ∆τo/τo ¿ 1. To the first
order approximation in ε, we have

f(τks) = f(τos) + εgk(s), gk(s) :=
τk − τo

∆τo
τosf

′(τos),

which implies Mk(s) = Mo(s) + ε∆k(s) with Mo(s) =
f(τos)M and ∆k(s) = gk(s)M .

1Throughout this paper, e is a column vector with all entries being 1, and
a scalar function, e.g., φ, acts elementwise when its argument is a matrix
or vector.



When the oscillators are coupled, the CPG model becomes

vk = βe+µMo(s)φ(vk)+ ε
m∑

l=1

∆kl(s)φ(vl), k = 1, . . . ,m,

(3)
where ∆kk(s) = (ε/σ)∆k(s) is equal to the perturbation
term within the segmental oscillator with σ := ε/µ, and
where ∆kl(s) with l 6= k is the transfer matrix describing
the dynamics and structure of the coupling from the lth

segmental oscillator to the kth with

∆kl(s) = e−|k−l|τdsMkl, Mkl =
{

MA (k < l ≤ k + qA)
MD (k − qD ≤ l < k).

The time constant τd is the time it takes for an action
potential to travel from one segment to an adjacent seg-
ment. The small parameter ε represents the strength of the
intersegmental coupling which is assumed much weaker than
the intrasegmental coupling µ (ε ¿ µ), that is, σ ¿ 1.
The parameters qA (qD) and MA (MD) are the ascending
(descending) projection spans and coupling structures, re-
spectively. With v := col(v1, · · · , vm), the m equations in
(3) can be expressed compactly as follows:

v = βe + M(s)φ(v), M(s) = µMo(s) + ε∆(s). (4)

An essential assumption of the MHB approach is that the
induced oscillations in (4) are close to sinusoids with the high
frequency harmonic terms sufficiently suppressed through the
low-pass property of the synaptic dynamics, that is,

vp(t) ∼= ap[sin($t + cp) + bp], p = 1, · · · , nm (5)

where $, a = col(a1, · · · , anm), b = col(b1, · · · , bnm),
and c = col(c1, · · · , cnm) are the frequency, amplitude, bias,
and phase vectors, respectively. Substituting (5) into (4) and
solving for the parameters $, a, b, and c, one can obtain
an estimate for the oscillation profile of the CPG. This is
the main idea of harmonic balancing. A standard method to
avoid the difficulty caused by the nonlinear function (2) is to
use the approximation:

φ(a[sinx + b]) ∼= a[κ1(b) sinx + κ2(b)], (6)

where the second and higher order harmonics on the right
hand side are assumed small and neglected and the gain
functions κ1(b) and κ2(b) are called the describing functions.
With the approximations in (5) and (6), we obtain two
algebraic equations called MHB equations as follows: 2

H1($, h, b) := [I −M(j$)κ1(B)]h = 0,

H2(a,b) := [B −M(0)κ2(B)]a − β = 0,

|h| = a, ∠h = c, B = diag(b). (7)

2Throughout the paper, for a vector x ∈ Cn, we define y = |x| by
yk = |xk|, and θ = ∠x by θk = ∠xk for k = 1, . . . , n.

The neuronal network (4) is expected to have an oscillation
profile ($, a, b, c) in the sense of (5), if ($, h, b) is the
solution to

H($, h,b) :=
[

H1($, h, b)
H2(a, b)

]
= 0.

So, what follows is to investigate the solution to
H($, h, b) = 0 and hence to reveal the effects of the CPG
parameters on the oscillation profile.

III. Main Results
Since each segmental oscillator in (1) is a slight pertur-

bation of the nominal segmental oscillator defined by (3)
with ε = 0, the oscillation profile of the former would be
close to that of the nominal oscillator. Moreover, since each
oscillator in (3) receives small inputs from other oscillators
due to the weak intersegmental coupling, it is reasonable
to assume that the oscillation profile within each oscillator
does not deviate significantly from that for the uncoupled
case. Therefore, the intrasegmental oscillation profile of each
segmental oscillator under intersegmental coupling is well
approximated by that of the nominal oscillator. On the other
hand, the weak coupling can coordinate the timing (or phase)
of the segmental oscillators. This paper aims to find how this
coordination happens.

Let (ω, a, b, ψ) be the oscillation profile of the nominal
segmental oscillator (3) with ε = 0. Then, its MHB equations
become

0 = [I − µMo(jω)κ1(B)] ~, ~ = Aejψ, (8)
βe = [B − µMo(0)κ2(B)] a. (9)

with ~ := Aejψ, A := diag(a), and B := diag(b). We see
that the matrix µMo(jω)κ1(B) has an eigenvalue 1 and an
associated eigenvector ~. For further analysis later, we denote
the normalized left eigenvector by ` ∈ Cn:

0 = `∗ [I − µMo(jω)κ1(B)] , `∗~ = 1.

Remark 3.1: Under the uniformity assumptions a = ae
and b = be with a, b ∈ R, equations (8) and (9) reduce to

0 = (λI − µM)~, λ := 1/(f(jτoω)κ1(b)), ~ := ejψ,

0 = (cI − µM)e, c := (b − β/a)/(f(0)κ2(b)),
respectively. Clearly, λ is an eigenvalue of µM and ~ (`)
is the associated (left) eigenvector. While such pairs are not
unique, the result in [6] suggests that the maximal eigenvalue3

contains the information of a stable oscillation.

In terms of the oscillation profile for the nominal
segmental oscillator, the solution to the MHB equation
H|ε=0($o, ho, bo) = 0 of the uncoupled CPG can be
expressed as follows :

$o = ω, ho = α ⊗ ~, bo = e ⊗ b (10)

3The maximal eigenvalue is defined to be the one with the largest
imaginary part among those with the largest real part.



for an arbitrary vector α satisfying

α ∈ Cm, |α| = e, θ := ∠α.

In other words, the uncoupled CPG is expected to have the
following oscillation profile:

vp(t) ∼= ai[sin(ωt + θk + ψi) + bi], p := (k − 1)n + i,

k = 1, · · · ,m, i = 1, · · · , n

where θ represents the intersegmental phases depending on
the initial states of the segments.

As explained at the beginning of this section, the intraseg-
mental oscillation profile of the weakly coupled CPG (4) can
be approximated as $ ≈ $o, h ≈ ho, b ≈ bo. However,
the weak coupling can coordinate the intersegmental phase θ.
Next, we will propose an approach for estimating θ followed
by two effective predictive formulae.

Assumption 1: The solution to the MHB equation
H($, h, b) = 0 of the coupled CPG satisfies

$ = $o + o(ε), h = ho + εh̃ + o(ε), b = bo + εb̃ + o(ε)

for some h̃, b̃ ∈ Rnm. Moreover, the perturbation b̃ is
uniform over the chain, i.e.,

b̃ = γ ⊗ b̃ (11)
for some γ ∈ Rm and b̃ ∈ Rn.

Theorem 3.1: Under Assumption 1, the intersegmental
vector α satisfies

(ρΓ −∇)α = o(1), ∇ := L∗∆(jω)κ1(Bo)H (12)
with

L := diag(`, . . . , `), H := diag(~, . . . , ~)
for some ρ ∈ C.

Proof: For the convenience, we define

Bo := diag(bo), B̃ = diag(b̃), B̃ = diag(b̃), Γ := diag(γ),

and note κi(B) = κi(Bo) + εκ′
i(Bo)B̃ + o(ε). Using the

fact that H|ε=0($o, ho, bo) = 0, the coupled MHB equation
H1($, h,b) = 0 becomes

[µMo(jω)κ′
1(Bo)B̃ + ∆(jω)κ1(Bo)](α ⊗ ~)

= [I − µMo(jω)κ1(Bo)]h̃ + o(1). (13)

By the definitions of L and H , we have

L∗(I − µMo(jω)κ1(Bo)) = 0, L∗H = I.

Multiplying (13) by L∗ from the left,

(L∗ΥH −∇)α = o(1),

with Υ := −κ1(Bo)−1κ′
1(Bo)B̃. Using (11), we have

L∗ΥH = ρΓ, ρ := −`∗κ1(B)−1κ′
1(B)B̃~,

and hence (12).

Remark 3.2: In (12), o(1) is a small term as ε → ∞, ρ is
the maximal eigenvalue of Γ−1∇, and α is the corresponding
eigenvector. An algorithm could be proposed for solving (12)
for α, ρ, and Γ. In practice, however, a simpler but effective
solution to (12) is obtained by approximately letting Γ = I ,
i.e.,

(ρ −∇)α = 0, (14)
so that ρ is the maximal eigenvalue of ∇ and α is the associ-
ated eigenvector. In this case, |α| = e may not always hold.
Nevertheless, this approximate solution may be sufficient to
give a reasonable estimate of the intersegmental phases as
we will discuss for the leech CPG model.

Theorem 3.1 proposes an approximate method to analyze
the intersegmental phase coordination for weakly coupled
CPGs, which is the most important characteristic of pattern
generation. Two effective formulae for estimating the inter-
segmental phase lag η ∈ Rm−1,

ηk := θk − θk+1, k = 1, · · · ,m − 1,

are given below. We first consider the case where the seg-
mental oscillators are identical (no period gradient) and then
take the period gradient into account later.

Predictive Formula 1: Consider a chain of many (m À 1)
identical segmental oscillators, i.e., τk = τo, k = 1, · · · , m,
if the biases within the nominal oscillator are uniform (b =
be), then the average phase lag can be predicted as follows:

ηo =

[
rA

qA∑
k=1

(kηA − k2ωτd) + rD

qD∑
k=1

(kηD + k2ωτd)

]

/

[
rA

qA∑
k=1

k2 + rD

qD∑
k=1

k2

]
, (15)

where rAejηA = `∗MA~ and rDejηD = `∗MD~. If qA =
qD = q and rA = rD, this formula reduces to

ηo =
(

ηA + ηD

2

)(
q∑

k=1

k

)
/

(
q∑

k=1

k2

)
. (16)

Derivation: In Theorem 3.1, the basic coupling matrix ∇
is given by

∇ = k



0 ∇1 · · · ∇qA
0

∇−1 0 ∇1
. . . . . .

... ∇−1 0 ∇1
. . . ∇qA

∇−qD

. . . ∇−1 0
. . .

...
. . . . . . . . . . . . ∇1

0 ∇−qD
· · · ∇−1 0


where qA and qD are the intersegmental projection spans in
the ascending and descending directions, respectively, k is
defined by k := κ1(b), and

∇k := rAej(ηA−kωτd), ∇−k := rDej(ηD−kωτd)



for integers k ≥ 1. To estimate the average phase lag, let
us consider the limiting case where the oscillator chain is
infinitely long (m = ∞). In this case, a generic row of the
MHB equation (ρI −∇)α = 0 takes the following form:

qA∑
k=−qD

∇kαk = 0, ∇0 := −ρ/k. (17)

Due to the uniformity of the intersegmental connections over
the chain (that makes ∇ a Toeplitz matrix), the eigenvector
α has the structure such that αk+1/αk is constant over k.
Consequently, the intersegmental phase lag is uniform over
the chain, and we may let αk = re−jkηo where ηo is
the intersegmental phase lag per segment. Substituting this
expression for αk into (17) and solving for ρ, we have

ρ = krA

qA∑
k=1

ej(ηA−k(ηo+ωτd))

+ krD

qD∑
k=1

ej(ηD+k(ηo−ωτd)).

(18)

This is a parametrization of the set of infinitely many
eigenvalues of the infinite matrix ∇ in terms of ηo ∈ R.
The profile of a stable oscillation can be estimated from the
maximal eigenvalue, and hence we are interested in finding
ηo such that f(ηo) := <[ρ] takes its maximum value. Taking
the derivative and setting it to zero, we have

f ′(ηo)
k

∼=

[
rA

qA∑
k=1

(kηA − k2ωτd) + rD

qD∑
k=1

(kηD + k2ωτd)

]

−

[
rA

qA∑
k=1

k2 + rD

qD∑
k=1

k2

]
ηo = 0

where we used the approximation sin(x) ∼= x for small x.
Solving this equation for ηo, we obtain the formula (15).

Predictive Formula 2: Consider a chain of many (m À 1)
non-identical segmental oscillators, if the biases within the
nominal oscillator are uniform (b = be), then the interseg-
mental phase lag can be predicted as follows:

ηk = ηo + (ε/σ)(∆τk/∆τo)ϕ, ∆τk := τk+1 − τk

ϕ := −=[k(`∗M~)jτoωf ′(jτoω)/ρ] (19)

where ηo and ρ are given by (16) and (18), respectively.
Derivation: First, we assume that each segmental oscil-

lator has the nominal time constant τo except that the pth

segment has the time constant τp 6= τo. With this change, the
basic coupling matrix, denoted by ∇̄, is slightly modified
from ∇ by ∇̄ = ∇ + ξpepe

T
p where ep is the vector having

zero entries except for the pth entry which is one, and ξp

is defined as ξp := k(ε/σ)(`∗M~)gp(jω). Now, the MHB
equation becomes (ρ̄I −∇̄)ᾱ = 0. We assume that the effect
of the time constant perturbation is local in the sense that
ᾱ ∼= α + epδp for some δp ∈ C, where α is the maximal

eigenvector of ∇ satisfying ∇α = ρα for the eigenvalue ρ
defined in (18). We further assume that the perturbation in
the eigenvalue is small; ρ̄ ∼= ρ. With these approximations,
we have

(ρI −∇− ξpepe
T
p)(α + epδp) ∼= 0. (20)

Multiplying the equation by eT
p from the left and using ∇α =

ρα, we obtain δp
∼= ςpαp, ςp := ξp/ρ where |ςp| is assumed

small. As a result, we have

θp = −pηo + =(ςp), θk = −kηo for k 6= p. (21)

To derive a formula for the phase lags in the case of
an arbitrary period gradient, we consider the time constant
perturbation in a single oscillator as before and start with
(20). Taking the summation of (20) over p = 1, . . . ,∞, we
have (ρI−∇−Ξ)δ−Ξα ∼= 0 where Ξ is the (infinite) diagonal
matrix having entries ξp with p = 1, . . .∞, and δ and α are
(infinite) vectors with entries δp and αp, respectively. This
equation implies (ρI − ∇ − Ξ)(α + δ) ∼= (ρI − ∇)α = 0.
Hence, if the coupling matrix ∇ is perturbed to ∇+Ξ due to
the period gradient, the resulting phases are perturbed from
∠α to ∠(α+δ) or ∠α+=(ς). In summary, the intersegmental
phases for general period gradients, perturbed from a nominal
τo, are estimated as θk = −kηo + =(ςk), ςk := ξk/ρ, Using
the definition of gk(s), we obtain (19).

IV. Application to Leech Swimming CPG
In this section, Theorem 3.1 and the two predictive formu-

lae are applied to leech swimming CPGs that are described
as a set of weakly coupled oscillators (4) with the following
nominal parameters (perturbed cases are also considered):

f(τs) =
1 − r

1 + (1 − r)τs
, M =

 0 −1 0
0 0 −1

−1 0 0

 ,

MA =

 0 −1 0
0 0 −1
0 0 0

 , MD =

 2 0 0
0 0 0
0 0 0

 ,

n = 3, m = 17, τo = 200 ms, r = 0.3, q = 5,

τd = 15 ms, µ = 6, β = 30r mV, σ := ε/µ = 0.015.

In what follows, we will make predictions on the interseg-
mental phase θ using (14), and compare the results with
existing observations made from physiological experiments.
The two predictive formulae developed in the previous sec-
tion will explain the phase setting mechanisms underlying
the experimental observations.

A. Effects of the projection span

First, we will examine how the intersegmental phase lags
depend on the length of the oscillator chain, assuming that
all the segmental oscillators are identical (τk = τo for all k).
Fig. 1 shows the relationship between the estimated phase
lags and the number of ganglia in the chain, in comparison



with the experimental data from Fig. 3 of [10]. The average
value of the intersegmental phase lags per segment is 30◦ for
two segments, and reduces to about 8◦ as the number of seg-
ments increases. We note that the significant decrease occurs
when the number of segments increases from two to six, and
the average phase lag remains roughly constant beyond six.
This tendency agrees with the data. Previous experimental
observations [10] suggested that the intersegmental couplings
spanned over about six segments (or the projection span was
q = 5) but not more than seven segments. Given this fact, we
hypothesize that the reduction in phase lag is related to the
projection span, rather than the length of the oscillator chain.
This hypothesis might be verified in the following table.

m 2 5 8 11 14 17
q = 1 30◦ 30◦ 30◦ 30◦ 30◦ 30◦

q = 3 n.a. 14.9◦ 13.8◦ 13.4◦ 13.3◦ 13.2◦

q = 5 n.a. n.a. 9.6◦ 9.0◦ 8.7◦ 8.6◦

q = 7 n.a. n.a. 7.3◦ 7.0◦ 6.7◦ 6.5◦

The predictive formula (16) for ηo clearly explains the
dependence of the average phase lag on the projection span q.
In particular, it shows that the average intersegmental phase
lag ηo is a decreasing function of the connection span q since
the denominator grows faster than the numerator as q gets
larger. The following table, derived from (16), summarizes
how ηo for the leech CPG changes with q:

q 1 2 3 4 5
ηo 30◦ 18◦ 13◦ 10◦ 8◦

It confirms that the formula indeed captures the average phase
lag.
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Fig. 1. Intersegmental phase lags of leech swimming CPGs composed of
different numbers of segments (m = 2, 5, 8, 11, 14, 17) (r = 0.3, µ =
6, σ = 0.015, τk = 200ms, τd = 15ms). Each line connecting ◦ (not a
line but a single point for the case with m = 2) represents the phase lags
of a segment with respect to its adjacent segment on the anterior side. The
average phase lag is marked by × in the bottom graph for m = 2, · · · , 17.
The ?’s represent the physiological experiment results cited from [10].

The intersegmental phase lag can be further studied for the
case where qA 6= qD as in (15). Fig. 2 shows the phase lag
curve for the nominal case (q = 5) as well as perturbed cases.
The phase lags are found insensitive to qD, but uniformly
decrease when qA is increased. This property is captured by
the formula (15) that gives estimates as follows:

qA 5 5 5 4 5 6
qD 4 5 6 5 5 5
ηo 7.5◦ 8.2◦ 8.8◦ 10.2◦ 8.2◦ 6.0◦

The estimates are quantitatively close to the average values of
the phase lags in Fig. 2, indicating that the formula (15) ob-
tained for an oscillator chain of infinite length approximates
the average phase lag of a finite chain reasonably well.
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Fig. 2. The effects of the intersegmental projection span on the interseg-
mental phase lags (r = 0.3, µ = 6, σ = 0.015, τk = 200ms, τd = 15ms).
In the upper graph, the ascending projection span is fixed as qA = 5 and
the descending projection span qD is varied from 4 to 6 (◦ = 4, × = 5,
and ∗ = 6). In the lower graph, the descending projection span is fixed as
qD = 5 and the ascending projection span qA is varied from 4 to 6. The
locations of the two “edges” in each phase lag curve correlate exactly to the
projection spans.

B. Effects of the period gradient, coupling strength, and
communication delay

It has been found [11] that the segmental oscillators in the
leech swimming CPG are not exactly identical to each other,
but have differing intrinsic cycle periods. In this section,
we will use the MHB approach to analyze how the period
gradient and the coupling strength interplay to affect the
intersegmental phase lag.

We consider the uniform period gradient case where the
intrinsic periods of the segmental oscillators vary linearly
along the body. In particular, we picked the time constant of
the middle segment as the nominal value, i.e., τo = τ9 =
200 ms, and set τk = (k − 9)∆τo + τo for a constant
gradient ∆τo. From (19), the intersegmental phase lags would
depend on ε/σ := ∆τo/(τoσ). Therefore, we examine the
intersegmental phase lag curve for several cases where ε/σ
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Fig. 3. Intersegmental phase lag curves with uniform period gradient (r =
0.3, µ = 6, τd = 15ms). The bottom graph depicts the phase lag curves for
the cases ε/σ = ±1, ±0.5, and 0. The intersegmental phase lag η increases
with ε/σ. For reference, the time constant τk of each segment is plotted in
the upper graph for a particular choice σ = 0.015, where the slope ∆τo

varies between ±3 ms so that ε/σ varies between ±1.

takes a value between ±1 in Fig. 3. It explains earlier
observations from physiological experiments on leeches [12]:
“For those ganglion chains in which the anterior ganglia had
greater periods (i.e., ε < 0), the reduced coupling (σ) led
to reduced or even reversed phase relationships (η) across
the lesion. In contrast, reduced coupling (σ) between halves
of a chain in which the posterior ganglia had greater cycle
periods (i.e., ε > 0) led to increased phase lags (η) across
the lesion.” These observations correspond to the fact that,
in (19), reduction in the coupling strength σ > 0 leads to a
reduced/increased phase lag when the period gradient ∆τk is
negative/positive.
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Fig. 4. Simulated and predicted intersegmental phase lags ( r = 0.3, µ =
3, τk = 200ms, τd = 15ms). The intersegmental coupling strength σ
was varied from 0.005, 0.01, 0.03 to 0.05, and the model was simulated
numerically, to obtain the phase lag curves marked by ◦. The phase lag
curve predicted by the equations (12) is marked by ¦. The predicted curve
is independent of σ due to ∆τ = 0. The prediction error becomes more
significant for a larger σ.

It is known [13] that it takes about τd = 15 ms for an action
potential to travel through the nerve cord from one segment
to the next. This communication delay may have a significant
impact on the intersegmental phase lags. In (19), when the
communication delay τd is varied, the value of ϕ increases
with τd almost linearly in the range 0 ≤ τd ≤ 30 ms, and
can be approximated by ϕ ∼= τd/10 deg where the unit for
τd is ms. Hence, from (19), we expect that the phase lags
increase/decrease with τd in the presence of positive/negative
time constant gradient ∆τo, but is insensitive to τd if the
intrinsic periods are uniform over the oscillator chain. This
property has been observed in simulation which is omitted
due to space limitation.

Finally, the accuracy of MHB prediction is examined in
Fig. 4 where the phase lag curves from numerical computer
simulations for various values of σ are plotted in compari-
son with the phase lag curve predicted from analyses. The
MHB analysis provides a very reliable prediction when the
intersegmental coupling is weak as assumed in the analysis.

V. CONCLUSION

In this paper, an MHB method for oscillation analysis
has been introduced and applied for a leech swimming CPG
model. The leech CPG model was analyzed to estimate the
intersegmental phase lags, exploiting the weakly coupled
chain structure. Simple formulas are obtained for the average
phase lag and for the phase lags with period gradient. These
formulae and numerical analyses revealed how the interseg-
mental phase lags were determined by various parameters.
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